
Python
Bootcamp

A Rapid Crash Course Featuring
Q&A Sessions, Exercises, and Projects
—
Vaskaran Sarcar

Python Bootcamp
A Rapid Crash Course

Featuring Q&A Sessions,
Exercises, and Projects

Vaskaran Sarcar

Python Bootcamp: A Rapid Crash Course Featuring Q&A Sessions,

Exercises, and Projects

ISBN-13 (pbk): 979-8-8688-1515-7		 ISBN-13 (electronic): 979-8-8688-1516-4
https://doi.org/10.1007/979-8-8688-1516-4

Copyright © 2025 by Vaskaran Sarcar
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmis-
sion or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham
Editorial Assistant: Gryffin Winkler

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New
York Plaza, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a Delaware LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub. For more detailed information, please visit https://github.com/
Apress/Python-Bootcamp.

If disposing of this product, please recycle the paper

Vaskaran Sarcar
Kolkata, West Bengal, India

https://doi.org/10.1007/979-8-8688-1516-4

I dedicate this book to all the unsung heroes and volunteers
who fought on the front lines of the COVID-19 battle to save

humanity and this beautiful world.

v

Table of Contents

About the Author���xv

About the Technical Reviewer���xvii

Acknowledgments��xix

Introduction��xxi

Part I: Foundations���1

Chapter 1: �Getting Ready���3

What Is Python?���3

Setting Up the Programming Environment��4

Installing Python���4

Checking the Installation Status���6

Troubleshooting��7

Checking Multiple Python Versions��8

Running the Code���8

Using the Command Prompt���9

Using IDLE��10

Using Popular IDEs���12

Using Comments��23

Useful Notes���25

Summary���27

Exercise 1��28

Keys to Exercise 1��28

vi

Chapter 2: �Variables and Operators���31

Understanding Variables��31

Assigning Variables��31

Types of Variables���38

Reassigning Variables��40

Naming Conventions��43

Operators���50

Types��51

Precedence of Operators��51

Operators Associativity���55

Summary���57

Exercise 2��57

Keys to Exercise 2��58

Chapter 3: �Simple Data Types��63

Strings��64

Playing with Strings���64

Using Built-In Functions���67

Numbers��75

Playing with Numbers��75

Using Built-In Functions���79

Importing the math Module��81

Booleans��84

Playing with Booleans��84

Making Interactive Programs���86

Accepting User Inputs��86

Summary���89

Table of Contents

vii

Exercise 3��89

Keys to Exercise 3��90

Case Studies��91

CS3.1 Problem Statement��92

CS3.2 Problem Statement��93

Sample Implementations���94

CS3.1 Implementation��94

CS3.2 Implementation��95

Part II: Building Smart Programs���97

Chapter 4: �Decision-Making��99

Understanding Conditional Structures���99

Using an if Statement���99

Using the if-else Statements��100

Using the if-elif-else Statements��102

Alternative Designs��107

Pattern Matching Using the match Statement���109

Tautology and Contradictions���111

Summary���112

Exercise 4��112

Keys to Exercise 4��114

Case Study���116

CS4.1 Problem Statement��116

CS4.2 Problem Statement��117

Sample Implementations���117

CS4.1 Implementation��118

CS4.2 Implementation��119

Table of Contents

viii

Chapter 5: �Loops��123

The Purpose of Iteration���123

The while Loop���125

Notable Characteristics��125

The for Loop���129

Is range a Function or a Type?��130

Introducing Lists���134

Use of the break Statement��136

Use of the continue Statement���138

Using Built-In Functionalities���139

The iter and next Functions��139

The enumerate Function��141

Nested Loop��141

Summary���143

Exercise 5��144

Keys to Exercise 5��144

Case Study���146

CS5.1 Problem Statement��146

CS5.2 Problem Statement��147

Sample Implementations���148

CS5.1 Implementation��148

CS5.2 Implementation��149

Chapter 6: �Advanced Data Types���151

Lists���151

Playing with Lists���151

Tuples���165

Playing with Tuples���167

Table of Contents

ix

Dictionaries��172

Playing with Dictionaries��172

Summary���174

Exercise 6��175

Keys to Exercise 6��176

Case Study���178

CS6.1 Problem Statement��178

CS6.2 Problem Statement��179

Sample Implementations���180

CS6.1 Implementation��180

CS6.2 Implementation��181

Chapter 7: �Functions and Modules��183

Function Overview���183

Characteristics���183

Discussion on Function Arguments��188

Positional Argument���188

Keyword Arguments���189

Use of Default Values��190

Variable Arguments��193

Lambda Functions��197

How to Use?���197

Modules���199

Creating a Module��200

Importing Partial Contents��201

Importing Entire Contents���202

Alias��205

Table of Contents

x

Additional Notes���206

General Form of Import��206

Executing a Program as the Main Program��207

Summary���209

Exercise 7��210

Keys to Exercise 7��212

Case Study���216

CS7.1 Problem Statement��216

CS7.2 Problem Statement��218

Sample Implementations���218

CS7.1 Implementation��218

CS7.2 Implementation��221

Chapter 8: �Exception Management��223

General Philosophy��224

Common Terms��225

Exception Handling in Python��226

Hierarchical Structure��226

Key Points���231

Using try-catch-finally��233

Using the else Block���236

Using the pass Statement��238

Arranging Multiple except Blocks���240

Summary���245

Exercise 8��246

Keys to Exercise 8��247

Table of Contents

xi

Case Study���249

CS8.1 Problem Statement��249

Sample Implementation���251

CS8.1 Implementation��251

Chapter 9: �Programming with Files���253

Processing Text Files��253

Reading from a File��254

Writing to a File��261

Processing Binary Files��267

Copying an Image���267

Pickling and Unpickling��268

Handling Exceptions��272

FileNotFoundError��272

Exercise 9��274

Keys to Exercise 9��275

Case Study���281

CS9.1 Problem Statement��281

CS9.2 Problem Statement��282

Sample Implementations���284

CS9.1 Implementation��284

CS9.2 Implementation��285

Part III: Introduction to OOP���291

Chapter 10: �Classes and Objects���293

Basic Concepts and Common Terms��293

Modeling a Class��294

Creating Objects���295

Alternative Code���296

Table of Contents

xii

Initializer��298

Using Initializers���299

Changing an Attribute Value���302

Default Attributes���304

Applying the Concept���304

Class Variables versus Instance Variables��306

Importing Classes��307

Importing a Single Class���307

Importing Multiple Classes���309

Importing the Whole Module��310

Alternative Code���311

Summary���313

Exercise 10��314

Keys to Exercise 10��315

Case Study���316

CS10.1 Problem Statement��317

CS10.2 Problem Statement��317

Sample Implementations���317

CS10.1 Implementation��317

CS10.2 Implementation��318

Chapter 11: �Inheritance���321

Basic Concepts and Terminologies��321

Types of Inheritance���322

Single Inheritance��323

Multiple Inheritance��327

Investigating the Super Call���331

Hierarchical Inheritance���334

Table of Contents

xiii

Multilevel Inheritance���334

Hybrid Inheritance��335

Private Variables and Methods���336

Does Python Have Private Variables?���336

Accessing Private Data���338

Final Thoughts��341

Summary���342

Exercise 11��342

Keys to Exercises 11��347

Case Study���351

CS11.1 Problem Statement��351

CS11.2 Problem Statement��352

Sample Implementations���353

CS11.1 Implementation��353

CS11.2 Implementation��354

�Appendix A: Supplementary Material��357

�Appendix B: What’s Next?��385

�Appendix C: Other Books by the Author��387

�Index��389

Table of Contents

xv

About the Author

Vaskaran Sarcar obtained his master’s

in engineering from Jadavpur University,

Kolkata (India), and his master’s in computer

application from Vidyasagar University,

Midnapore (India). He was a National Gate

Scholar (2007-2009) and has over 12 years of

experience in education and the IT industry.

He devoted his early years (2005–2007) to the

teaching profession at various engineering

colleges, and later, he joined HP India PPS R&D Hub in Bangalore. He

worked there for more than 10 years and became a senior software

engineer and team lead. After that, he pursued his passion and has already

authored 17 Apress books that can be found at the link amazon.com/

author/vaskaran_sarcar or the link https://link.springer.com/search?
newsearch=true&query=vaskaran+sarcar&content-type=book&date
From=&dateTo=&sortBy=newestFirst. You can also find him on LinkedIn

at https://www.linkedin.com/in/vaskaransarcar. 

https://amazon.com/author/vaskaran_sarcar
https://amazon.com/author/vaskaran_sarcar
https://link.springer.com/search?newsearch=true&query=vaskaran+sarcar&content-type=book&dateFrom=&dateTo=&sortBy=newestFirst
https://link.springer.com/search?newsearch=true&query=vaskaran+sarcar&content-type=book&dateFrom=&dateTo=&sortBy=newestFirst
https://link.springer.com/search?newsearch=true&query=vaskaran+sarcar&content-type=book&dateFrom=&dateTo=&sortBy=newestFirst
https://www.linkedin.com/in/vaskaransarcar

xvii

About the Technical Reviewer
Shibsankar Das is currently working as a

senior data scientist at Microsoft. He has

more than 10 years of experience working

in IT where he has led several data science

initiatives, and in 2019, he was recognized

as one of the top 40 data scientists in India.

His core strength is in GenAI, Deep Learning,

NLP, and Graph Neural Networks. Currently,

he is focusing on his research on AI Agents

and Knowledge Graph. He has experience working in the domain of

foundational research, FinTech, and ecommerce.

Before Microsoft, he has worked at Optum, Walmart, Envestnet,

Microsoft Research, and Capgemini. He has pursued a master’s from the

Indian Institute of Technology, Bangalore.  

xix

Acknowledgments
At first, I thank the Almighty. I extend my deepest gratitude and thanks to

the following people:

Celestin and the Apress team: I sincerely thank each of you for giving me

another opportunity to work with you and Apress.

Shibsankar: I appreciate your time and effort in reviewing the book.

Gryffin Winkler, Deepa Tryphosa, Jagathesan, Vinoth, and the copy
editor Leah Bitong: Thanks to each of you for your exceptional support

in this book’s development and for beautifying my work. Your efforts are

extraordinary.

Finally, I thank the Python community for sharing their knowledge

in various forms. In fact, I thank everyone who directly or indirectly

contributed to this work.

xxi

Introduction

Python Bootcamp: A Rapid Crash Course Featuring Q&A Sessions, Exercises,

and Projects is an introductory guide to Python programming. To give you

an overview of the book, let me highlight a few points:

•	 The primary aim of this book is to make you familiar

with Python programming as quickly as possible. I

believe that you can enjoy learning when you analyze

case studies, ask questions (about the doubts), and

do some exercises. So, throughout this book, you will

see interesting program segments, “Q&A sessions”,

and exercises. By analyzing these Q&As and doing the

exercises, you can verify your progress. As said before,

these are presented to make your future learning easier

and enjoyable, but most importantly, they make you

confident as a developer.

•	 Toward the end of each chapter, you’ll see the exercises.

Chapter 3 onward, you’ll start solving case studies

(a.k.a. projects). Once you finish reading the chapter,

you’ll get the complete implementation of the projects.

The exercises and case studies are neither too easy

nor too tough. These are within your optimal zone of

difficulty. These will help you test your understanding

and raise your confidence level.

xxii

•	 Each question in these Q&A sessions is marked with

Q<Chapter_no>.<Question_no>. For example, Q2.1

means question number 1 from Chapter 2. Similarly,

each question in these exercises is marked with

E<Chapter_no>.<Question_no>. For example, E5.3

means exercise number 3 from Chapter 5. The case
studies also have a similar format, but for them, you
will see the prefix CS. For example, CS5.1 means case

study 1 from Chapter 5.

•	 Many of us are afraid of fat books because they do not

promise that we can learn the subject in 1 day or 7 days.

But you know that learning is a continuous process.

It is hard to achieve any real mastery in 24 hours or 7

days. So the motto of the book is to learn the core topics

of Python; whatever effort I need to put in, I am okay

with that. Still, simple arithmetic says that if you can

complete one chapter in 1 day, you can complete the

book within 11 days (your learning speed depends only

on your concentration level, focus, and dedication).

But this arithmetic calculation is secondary! I have

designed the book in such a way that upon completion

of the book, you will know the core concepts in Python.

Most importantly, you’ll know how to learn further.

•	 Python is a very popular computer language and

is widely used. Like other popular programming

languages, it grows continuously to give us support

with additional features and functionalities. In this

book, you’ll see me using Python 3.13. At the time of

this writing, it is the latest version. So everything in

this book should run in Python 3.13 and upcoming

versions.

Introduction

xxiii

�How Is the Book Organized?
The book has eleven chapters and three appendixes. Let me give you a

quick overview of them:

Chapter 1 is a warm-up session for you. Here, you’ll set up your

programming environment and learn about code comments that will help

you understand the programs better.

Chapter 2 makes you familiar with variables and operators.

Chapter 3 discusses the common data types such as strings, numbers,

and Booleans. This chapter also helps you make interactive programs.

Chapter 4 talks about decision-making in your program.

Chapter 5 discusses iterations. Here, you’ll learn about loops and the

usage of break and continue statements.

Chapter 6 shows the usage of some advanced data types such as lists,

tuples, and dictionaries.

Chapter 7 teaches you how to use functions to make your code more

Pythonic. It also discusses modules along with their usage.

Chapter 8 talks about exceptions and how to manage them.

Chapter 9 teaches you file-handling mechanisms.

Chapters 10 and 11 briefly cover the object-oriented programming

basics and show you the usage of classes, objects, and inheritance.

Appendix A provides some extra material that was not discussed in the

previous chapters.

Appendix B suggests a list of recommended books, courses, and online

resources that can help you learn more on this topic.

Appendix C lists my other books.

You can download the source code of the book from the link: https://
github.com/Apress/Python-Bootcamp.

Introduction

https://github.com/Apress/Python-Bootcamp
https://github.com/Apress/Python-Bootcamp

xxiv

�Prerequisite Knowledge
The target readers for this book are those who are new to Python

programming. The book will be super easy for the readers with the least

coding experience in any other high-level computer language. I assume

that you can download a software installer following the instructions (or

you have already installed Python on your computer). So I do not spend

too much time on this topic. It is because you can find them easily both

online and offline.

�Who Is This Book For?
In short, you can pick the book if the answer is yes to the following
questions:

•	 Are you learning Python for the first time?

•	 Do you want to explore the Python basics step by step

but as quickly as possible?

•	 Would you like to cover a brief overview of object-

oriented programming and want to know how Python

supports the concept?

•	 Do you like to review your knowledge before you use

Python in advanced fields such as data science and

machine learning?

You probably should not read this book if the answer is yes to any of
the following questions:

•	 Are you confident about the Python fundamentals?

•	 Are you looking for the advanced concepts, excluding

the topics mentioned previously?

Introduction

xxv

•	 Do you dislike a book that has an emphasis on Q&A

sessions, exercises, and case studies?

•	 “I dislike Windows OS and PyCharm. I want to learn

and use Python without them only.” Is this statement

true for you?

�Guidelines for Using This Book
Here are some suggestions so you can use the book more effectively:

I suggest you read these chapters sequentially. The reason is that some

fundamental techniques/concepts may be discussed in a previous chapter,

and I do not repeat the same in a subsequent chapter.

I also suggest that you complete the exercises in a chapter before you

enter a new chapter. This process can give you confidence, which can give

you a better payoff soon.

Indentation is an important part of Python programming. We consider

anything indented as a block of code in Python. Based on your device’s

screen size, you may not see the correct indentation in some programs. I

suggest that you refer to the actual code in those cases.

I used PyCharm 2024.2.4 (Community Edition) in the Windows 10

environment for this book. PyCharm has many interesting features. When

you work with large projects, those features are useful. The Community

Edition of PyCharm is also free of cost. If you do not use the Windows

operating system (OS), you can also use Visual Studio Code, which is also

a source-code editor developed by Microsoft to support Windows, Linux,

or Mac operating systems. This multiplatform integrated development

environment (IDE) is also free. However, I recommend that you check the

license and privacy statement as well. This is because this statement may

change in the future.

As said before, I used Python 3.13 for this book. This is the latest

version (at this time of writing). You can surely predict that version updates

will come continuously, but I strongly believe that these version details

Introduction

xxvi

should not matter much to you because I have used the fundamental

constructs of Python. So these codes should execute smoothly in the

upcoming versions of Python/PyCharm as well. I also believe that the

results should not vary in other environments, but you know the nature of

software that is naughty. So, if you like to see the same output, it is better to

mimic the same environment.

Remember that you have just started on this journey. As you learn about

these concepts, try to write your code. It helps you write better programs.

Author’s note: Python 3.x (commonly known as Python 3) is the current

and actively developed version, but Python 2.x (also known as Python 2)

is the legacy. You may see some old Python projects with Python 2, but I

recommend that you learn and use Python 3.

�Conventions in This Book
Here, I mention only two points: In some places, I have used only the

pronoun “he” to refer to a person when the context is generic, for example,

a customer, an executive, etc. Please treat it as “he” or “she” – whichever

applies to you.

Second, all the outputs and codes of the book follow the same font and

structure. To draw your attention, in some places, I have made them bold.

Here is a sample code fragment that is taken from Chapter 8:

// The previous portion is not shown here
except ValueError as e:
 print("Invalid input! Provide a correct input next time!")
 print(f"Error details: {e}")
else:
 print(f"The result of the division is: {result}")
finally:
 print("The program completes successfully.")

Introduction

xxvii

�Final Words
You are an intelligent person. You have chosen a topic that can assist

you throughout your career. As you learn and review these concepts, I

suggest you write your code; only then will you master this area. There is

no shortcut for this. Do you know the ancient story of Euclid and Ptolemy,

the ruler of Egypt? Euclid’s approach to mathematics was based on logical

reasoning and rigorous proofs, and Ptolemy asked Euclid if there was an

easier way to learn mathematics. Euclid’s reply to the ruler? “There is no
royal road to geometry.” Though you are not studying geometry, the

essence of this reply applies here. You must study these concepts and code.

Do not give up when you face challenges. Don’t forget that they’ll make

you a better developer.

Errata: I have tried my level best to ensure the accuracy of the content.

However, mistakes can happen. So I have a plan to maintain the “Errata,”

and if required, I can also make some updates/announcements there. So

I suggest that you visit those pages to receive any important corrections or

updates.

An appeal: You can easily understand that any good-quality work takes

many days and many months (even years!). Many authors like me invest

most of their time in writing and heavily depend on it. You can encourage

and help these authors by preventing piracy. If you come across any illegal

copies of our works in any form on the Internet, I would be grateful if you

would provide me/the Apress team with the location address or website

name. In this context, you can use the link https://www.apress.com/gp/
services/rights-permission/piracy as well.

Share your feedback: I believe that once you finish reading this book, you

will be confident about Python programming. I hope that you will value

the effort. Please provide your valuable feedback on the Amazon review

page or any other platform you like.

Introduction

https://www.apress.com/gp/services/rights-permission/piracy
https://www.apress.com/gp/services/rights-permission/piracy

PART I

Foundations
Part I consists of three chapters. In this part, you’ll set up your

programming environment and execute simple programs. This part will

make you familiar with variables, operators, and common primitive data

types such as strings, numbers, and Booleans. A careful study of this part

will help you understand the remaining part of the book easily.

3© Vaskaran Sarcar 2025
V. Sarcar, Python Bootcamp, https://doi.org/10.1007/979-8-8688-1516-4_1

CHAPTER 1

Getting Ready
This chapter briefly talks about the Python language and its importance.

Shortly, you’ll learn how to set up your programming environment before

you execute the programs.

�What Is Python?
Python is a computer programming language that was created by Guido

van Rossum in the late 1980s. It is a popular programming language and

is rapidly growing. The primary reasons for its popularity are simplicity

and readability. The official site (see What is Python? Executive Summary |
Python.org) states the following:

Python is an interpreted, object-oriented, high-level program-
ming language with dynamic semantics.

At this moment, you do not need to dig further. You can simply note

that since it is a high-level language, you can avoid direct interaction

with registers, memory addresses, call stacks, etc. Instead, you write

your program in plain English. Most importantly, you can use Python

for various purposes. For example, you may notice its usage in game

programming, business applications, tools development, etc. As an

interpreted language, Python offers rapid prototyping and development.

So it saves developers time and energy. In recent years, we have noticed

https://doi.org/10.1007/979-8-8688-1516-4_1#DOI
https://www.python.org/doc/essays/blurb/
https://www.python.org/doc/essays/blurb/

4

its usage in emerging fields like data science and machine learning too.

Finally, I’d also like to mention that the Python community is very strong

and supportive, and they help you grow faster.

�Setting Up the Programming Environment
At this stage, you need to get the Python interpreter and install it before

you write your programs. You need to pick the correct interpreter based on

your operating system.

POINT TO NOTE

Nowadays, lots of alternative options are available. For example, you can

directly jump into coding using an online editor. To illustrate, I can head over to

https://www.online-python.com/ and easily execute some code. Still, I

recommend that you install Python on your system. You should not worry about

the early setup issues (if any). Sorting out these issues can provide long-term

benefits in the future.

�Installing Python
Get the Python installer from https://www.python.org/. Once you click

the Downloads tab, you should see the latest Python version. For example,

once I followed these steps, I could see the following (see Figure 1-1).

Chapter 1 Getting Ready

https://www.online-python.com/
https://www.python.org/

5

Figure 1-1.  Official Downloads page for Python

Download the appropriate installer and run it. Since I used Python

for Windows, I downloaded the installer for Windows. While running

the installer, I suggest you select the Add python.exe to PATH option for

convenient access to Python across environments like command-line

interface (CLI), editor, etc.

Author’s note: I assume that you’re probably familiar with installing

software on a machine. There are lots of YouTube videos and online

materials that show how to install Python on your computer. Showing all

these steps with screenshots will make the chapter lengthy. If needed, you

can check those materials.

Chapter 1 Getting Ready

6

GENTLE REMINDER

As the book’s “Introduction” stated, the programs of this book were developed

and tested on a Windows (64-bit) machine. To make the chapter short, I’ll keep

the instructions only for Windows. There is no wondering that the specifics

can vary for a machine that uses a different OS. So, while downloading

software, you must read the OS-specific instructions from the corresponding

Downloads page.

�Checking the Installation Status
Once you download and install Python, the first step is to verify whether it

is installed properly. Open the command prompt and type python --
version. Using this command, I could see that Python version 3.13.0 was

installed on my computer (see Figure 1-2).

Figure 1-2.  Checking the Python version on a Windows machine

Chapter 1 Getting Ready

7

POINT TO NOTE

You can see that Python 3.13.0 is installed on my computer. When this chapter

was written, Python 3.13.0 was the latest version. Later, I got updates. Before

the release of this book, I was able to test my programs in version 3.13.2 as

well. From the online link https://www.python.org/downloads/, you

can learn about the different Python versions along with their release dates.

�Troubleshooting
If the previous command does not work and you notice something like

python is not recognized as an internal or external command, you

probably forgot to select the Add python.exe to PATH option when you

ran the installer. When I installed Python 3.12 on my computer, I chose the

default installation path, and the following two variables were added to the

Path environment variable:

C:\Users\Vaskaran Sarcar\AppData\Local\Programs\Python\
Python312\
C:\Users\Vaskaran Sarcar\AppData\Local\Programs\Python\
Python312\Scripts\

However, when I installed Python 3.13 on my computer, I chose a

different installation path, and the following two variables were added to

the Path environment variable:

C:\Python313\
C:\Python313\Scripts\

So, if you find any problem after the installation, I suggest that you first

find out the Python interpreter installation path and edit the environment

variable accordingly.

Chapter 1 Getting Ready

https://www.python.org/downloads/

8

�Checking Multiple Python Versions
If you have installed multiple Python versions on your computer, you

can check those installations as well. For example, when I wrote my first

Python book, I used Python 3.8. In between, I installed Python 3.12.4 and

now I installed Python 3.13.0 for this book. I can check all these Python

versions by executing the command py -0 as follows:

C:\Users\Vaskaran Sarcar>py -0
 -V:3.13 * Python 3.13 (64-bit)
 -V:3.12 Python 3.12 (64-bit)
 -V:3.8-32 Python 3.8 (32-bit)

PYTHON 2 IS A LEGACY

The online link https://www.python.org/doc/sunset-
python-2/#:~:text=We%20have%20decided%20that%20
January,as%20soon%20as%20you%20can. states the following:

We have decided that January 1, 2020, was the day that we sunset Python
2. That means that we will not improve it anymore after that day, even if
someone finds a security problem in it. You should upgrade to Python 3 as
soon as you can.

This is why this book also focuses on Python 3.x (known as Python 3), but

not on Python 2. Even if you see some old Python projects with Python 2, I

recommend you to learn and use Python3.

�Running the Code
You can write and execute a Python program in various ways. Probably, one

of the simplest ways is to use a text editor (such as Notepad) to write a Python

program. For now, let me show you a few ways to run the Python code.

Chapter 1 Getting Ready

https://www.python.org/doc/sunset-python-2/#:~:text=We have decided that January,as soon as you can
https://www.python.org/doc/sunset-python-2/#:~:text=We have decided that January,as soon as you can
https://www.python.org/doc/sunset-python-2/#:~:text=We have decided that January,as soon as you can

9

�Using the Command Prompt
Open the command prompt, type py, and then press the Enter key to open

the Python shell. Notice the arrow tip in the following figure (Figure 1-3).

Figure 1-3.  Checking the Python version in the command prompt,
then listing the available versions, and finally entering into the
Python shell

�Q&A Session

Q1.1 What is a shell?
In simple terms, it is an environment that is used to run other programs.

We can use shells for both the command-line interface and the graphical

user interface (GUI). Normally, we use it to refer to the command-line

interface of the operating system (OS). Developers often call the terms

“shells” and “terminals” in the same context interchangeably.

Let us try running some code snippets. You start typing the code after

the >>> prompt. Then you press the Enter (or Return) key and execute

the code. Here are some examples:

C:\Users\Vaskaran Sarcar>py
Python 3.13.0 (tags/v3.13.0:60403a5, Oct 7 2024, 09:38:07)
[MSC v.1941 64 bit (AMD64)] on win32

Chapter 1 Getting Ready

10

Type "help", "copyright", "credits" or "license" for more
information.
>>> 12+3
15
>>> 7>5
True
>>> 100<95
False
>>> print("Hello!")
Hello!
>>>

Now you can type exit() (or Ctrl+Z plus Enter) to quit from

this shell.

�Using IDLE
You can also launch IDLE to get a Python shell where you can execute

Python commands. To get IDLE in Windows 10, you can type IDLE in the

search box as shown in Figure 1-4.

Chapter 1 Getting Ready

11

Figure 1-4.  Searching IDLE

Once you can see the app, click it to launch. You should see the

following screen (see Figure 1-5).

Figure 1-5.  Snapshot of IDLE Shell 3.13.0 where users can execute
Python commands

Chapter 1 Getting Ready

12

This shell waits to get a command from the user, executes the

command, and then displays the result. Once this cycle is completed, it

waits for the next command to receive from the user.

For example, if you type print("Hello World!") after >>> in the shell

and press the Enter key, you can immediately see the output Hello World

in the next line. Let us try a few more lines of code and verify the output as

follows (see Figure 1-6).

Figure 1-6.  Displaying the output in the IDLE shell

Hopefully, you get an idea! To execute some basic commands or to

check whether you are ready for Python programming, this approach

is fine.

However, there is a problem: once you exit from the shell, you lose

all these commands. This is why you can use a text file to write a Python

program and save the file with the .py extension. A file with the .py

extension is called a Python script.

�Using Popular IDEs
I have shown you the use of simple command prompts to make you aware

of the alternative ways to run your Python programs. However, the use of

command prompts is not suitable for big programs. Ask any professional

about how they write programs. You will come to know that they use

specialized text editors or IDEs (IDE stands for integrated development

Chapter 1 Getting Ready

13

environment) to write the code. For example, the .NET developers often

use the Visual Studio IDE, the Python programmers often use the PyCharm

IDE, and the Java developers often use the Eclipse IDE. Let me show you

some of the key benefits of using a specialized IDE:

•	 They help you highlight the syntax error(s).

•	 They help you organize your files.

•	 They also support auto-completion for certain

functions and phrases, which is extremely helpful.

•	 You can also set breakpoints to pause at specified lines

in your program.

•	 You find code refactoring very easy.

•	 There are many IDEs with cross-platform support too.

�Q&A Session

Q1.2 What is code refactoring?
It is a process that is often used to improve the existing structure and

design of an application without changing its external functionality. You

may need to follow this process to make the code more efficient. Normally,

once the refactoring is done, the code is cleaner, more readable, and

maintainable as well.

Q1.3 It appears to me that we can avoid the process of refactoring by
writing better code at the beginning. Is this correct?
It is almost impossible to predict everything in the initial stage of

development. Once a product is deployed, you may feel the need for

refactoring after a substantial period, more particularly before you add a

new functionality to your code.

Chapter 1 Getting Ready

14

I wrote many books on C#. Since the Visual Studio Community Edition

is free, I often use this IDE to exercise my C# programs. The good news

is that you can run Python programs in this IDE as well. It helps me to

switch between C# and Python programs. To give you an example, let me

show you a snapshot that shows the presence of both the C# and Python

programs in Visual Studio as follows (see Figure 1-7).

Figure 1-7.  Displaying the presence of a C# project and a Python
project in the Visual Studio IDE

If you also have a C# background and like to exercise the Python

scripts (a.k.a. programs) in Visual Studio, you can follow the online

link https://learn.microsoft.com/en-us/visualstudio/python/
tutorial-working-with-python-in-visual-studio-step-01-create-
project?view=vs-2022.

Chapter 1 Getting Ready

https://learn.microsoft.com/en-us/visualstudio/python/tutorial-working-with-python-in-visual-studio-step-01-create-project?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/python/tutorial-working-with-python-in-visual-studio-step-01-create-project?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/python/tutorial-working-with-python-in-visual-studio-step-01-create-project?view=vs-2022

15

However, I’d like to use the PyCharm IDE to develop my programs
for this book. To learn and test simple Python scripts, PyCharm is a

pleasant choice for you. The good news is that at the time of this writing,

both the Visual Studio Community and PyCharm Community editions

are free.

Note  Spyder is another open source and cross-platform IDE, which
we often use in Python programming. For my machine learning
projects, I use Jupyter Notebook, in which I can test Python scripts.
If you install Anaconda distribution on your computer, you can find
Spyder IDE, Jupyter Notebook, and many other things. However, as
said before, to learn and test simple Python scripts, PyCharm can
help you a lot. It helps you to organize your files and identify syntax
errors. You can also set breakpoints to pause at specified lines in your
program. You find code refactoring very easy when you use PyCharm.

For the following program, I took some screenshots from the PyCharm

IDE. These can help you visualize the execution environment. But next

time onward, I’ll show you the programs and corresponding output only.

As said before, to execute the Python scripts, PyCharm is NOT mandatory.

You can run these programs in various ways (e.g., using IDLE, Spyder IDE,

Jupyter Notebook, etc.). So it makes little sense to take screenshots from

PyCharm for each of these programs.

Let me show you the steps. Though you can skip some of these steps,

I suggest you not skip them. This is because by following these steps, I

organized my code for this book:

Step 1: Open PyCharm.

Step 2: Click File ➤ New Project. Now set the project name, location,

and the Python version. (You can see that I have named the project

PythonBootcamp, set the location E:\MyPrograms, and chosen the latest

version of Python that was available on my computer.) Finally, click the

Create button (see Figure 1-8).

Chapter 1 Getting Ready

16

Figure 1-8.  Creating a project in PyCharm

Note  If you have multiple Python versions installed on your
computer, you can see them in the drop-down list, as shown in the
previous screenshot (Figure 1-8), and you can pick your preferred
Python version from there. I am using the latest version (3.13), which
was available at the time of this writing.

Step 3: Once you click the Create button, you’ll see the following

screen (Figure 1-9). Since I have already executed some Python scripts

using PyCharm, I get this option. But for the first-time users, you do not see

this window.

Chapter 1 Getting Ready

17

Figure 1-9.  Project open options in PyCharm

Step 3.1: Once I chose the current window, I got the following screen

(see Figure 1-10).

Figure 1-10.  The project is opened in a new window

Step 4: I have organized the code of this book chapter-wise. Right-click

the project folder name (PythonBootcamp). Select “New” and then choose

“Directory” (see Figure 1-11).

Chapter 1 Getting Ready

18

Figure 1-11.  Adding a new directory under PythonBootcamp

Step 4.1: Let’s name it chapter1. Once it is done, you’ll see

Figure 1-12.

Figure 1-12.  The directory chapter1 is added under PythonBootcamp

Chapter 1 Getting Ready

19

Step 5: Now create a Python file under the directory named chapter1.

To do this, right-click the directory (chapter1), select “New,” and then

choose “Python file.” Let’s name it hello_world for now (see Figure 1-13).

Figure 1-13.  Naming the file hello_world

Step 5.1: Now press Enter. Notice that a new Python file is created for

you. See Figure 1-14.

Figure 1-14.  The hello_world.py is ready. You can write the code here

Chapter 1 Getting Ready

20

Congratulations! You are ready to write your first program in PyCharm.

Now, I’ll show you a simple Python program using PyCharm IDE.

�Demonstration 1.1

Let us write a simple Python program. Type the line print("Hello
World!") in a Python file (refer to the following screen). Now, move

the cursor to the next line by pressing the “Enter” key as shown in the

following figure (see Figure 1-15).

Figure 1-15.  The hello_world.py file contains a line of code

Save the file (File ➤ Save All (Ctrl+S)).

Now, you can run the program. Right-click the file name and click the

option Run ‘hello_world’ as shown in the following figure. See Figure 1-16.

Chapter 1 Getting Ready

21

Figure 1-16.  Run hello_world.py in PyCharm

�Output

Congratulation! You have successfully executed your first Python program

in PyCharm IDE. You can see the following output: Hello World! in the

following figure (Figure 1-17).

Chapter 1 Getting Ready

22

Figure 1-17.  The successful execution of the program generates
the output

If you want to run the program again, you can use the following

button as pointed by the arrow tip in the following figure. Notice that

“hello_world” is selected by default before you click the run button. See

Figure 1-18.

Figure 1-18.  The alternative option to run hello_world.py

Chapter 1 Getting Ready

23

POINTS TO REMEMBER

•	 Every time you write a new program, you can follow
the same approach.

•	 Here I have named my file hello_world.py. However,
once you download the programs from the Apress site,
you’ll see the script names like ch01_d01_hello_world.
py, ch01_d02_comments.py, etc. I followed this
structure so that you can easily identify the chapter
number and the corresponding demonstration number.
For example, ch01_d01 stands for Demonstration 1.1
(in other words, the first demonstration of Chapter 1).
In fact, this kind of naming follows the PEP8 guideline
(refer to the link https://www.python.org/dev/
peps/pep-0008/) as well.

�Using Comments
It is standard practice to use comments in your program. These comments

can help others to understand your code better. Let us consider a real-life

scenario. In a software organization, a group of people creates software

for its customers. It is possible that after some years, none of them will

be available (they may move to a different team, or they may leave the

organization). In such a case, someone needs to maintain the software and

continue fixing the bugs for its customers. However, it can be difficult to

understand the logic if there is no hint or explanation about the program.

Comments are useful in such scenarios. In Python, you see the following

options for comments:

Chapter 1 Getting Ready

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/

24

Case 1: Single-line comments using # tags. Here is an example:

This is a single-line comment

You can use them in line as well. Here is an example:

x=5 # Assigning 5 to x

However, the official guideline suggests that you should use inline

comments only when it makes sense. For example, the previous inline

comment was obvious, and this is why it was unnecessary. However, if

you write something like the following, it can help you understand the

code better:

x = x + 2 # Adjusting the border

Sometimes, you may work with a block of code that contains multiple

lines. In those cases, you can apply # to the beginning of each line of the

block, and then you put a single space (unless it is indented text inside the

comment).

A block can contain paragraphs. In such cases, those paragraphs are

separated by a line containing a single #.

Case 2: Multi-line docstrings as multi-line comments using three

double quotations (or single quotations). You can see one-line docstrings

as well. Here, I show you the use of docstrings that I used inside a function

in Chapter 7. For now, you do not need to understand the code. You only

see the texts that begin with triple-double quotations (" " ") and end with

triple-double quotations (" " "):

def print_details(name, age):
 """
 This function takes two parameters.
 You can supply the name and age of the user
 in this function.

Chapter 1 Getting Ready

25

 """
 print(f"Hello {name}! How are you?")
 print(f"You are now {age}.")

Useful Notes
Before you leave this section, I want you to remember the following points:

•	 Comments are simple notes or some texts. You use

them for human readers but not for the Python

interpreter. The Python interpreter ignores the text

inside a comment block.

•	 In the software industry, many technical reviewers

review your code. The comments help them

understand the program’s logic. It is also true that

a developer can forget the logic after some months.

These comments can help him recollect his logic.

However, you need to use comments wisely.

•	 Experts prefer to use the many single-line comments

using # tags.

•	 In Python programming, functions, modules, and

classes should have docstrings. These will make sense

when you see them in Chapter 7 or Chapter 11. There,

you’ll see that I used docstrings to describe a function

and class behavior. You’ll also know that a docstring

becomes the _doc_ attribute of an object. I leave the

discussion at this point.

In this chapter, let’s learn the use of simple comments that you may see

in others’ code.

Chapter 1 Getting Ready

26

�Demonstration 1.2

Let’s see a program that has many different comments:

Testing whether 2 is greater than 1
print(2>1)

x=5 # Assigning 5 to x
x = x + 2 # Adjusting the border

'''
I am using multi-line comments using three single quotes.
However, it is not recommended.
These are common in classes, functions, or modules.
'''

"""
I am using multi-line comments using three double quotes.
These are common in classes, functions, or modules.
"""

Now I'm showing multiple single-line comments
Multiplying 5 with 25
And printing the result

print(5*25)

�Output

Here is the output:

True
125

Chapter 1 Getting Ready

27

�Analysis

This program uses different comments, and it is easy to understand.

You can see that you have received output for the lines print(2>1) and

print(5*25) only. The remaining portions (comments) are ignored by the

interpreter. Since 2 is bigger than 1, the output came as True, and when

you multiply 5 with 25, the result is 125.

�Q&A Session

Q1.4 I can see that you have used both single quotes and double quotes
while describing a multi-line comment. Was this intentional?
The online link https://peps.python.org/pep-0008/#comments

describes conventions for writing good documentation strings, and there

you’ll see the use of double quotes but not single quotes. However, I

wanted to show you that you’ll not receive any errors while using single

quotes. I prefer to use double quotes. It is because C# and Java use the

same. In the upcoming chapters, you’ll become familiar with the string

data type. There, you’ll learn that the online link https://peps.python.
org/pep-0008/#string-quotes also states the following:

For triple-quoted strings, always use double quote characters
to be consistent with the docstring convention in PEP 257.

I know that this chapter was a bit slow, but it is important. These

discussions will help you understand upcoming chapters easily.

�Summary
This chapter gave a quick overview of the Python programming language.

It showed you how to set up your programming environment. It also

showed various ways to execute the Python scripts. Finally, it discussed

various code comments along with their usage.

Chapter 1 Getting Ready

https://peps.python.org/pep-0008/#comments
https://peps.python.org/pep-0008/#string-quotes
https://peps.python.org/pep-0008/#string-quotes

28

�Exercise 1
E1.1 Create a program to print the following structure:

*
**

E1.2 Write a program to print the sum of three numbers: 10, 15,
and 25.5.

E1.3 Which one do you prefer – more comments inside your code or
fewer comments inside the code?

�Keys to Exercise 1
Here is a sample solution set for the exercises in this chapter.

�E1.1

Upon executing this program, you can see the intended output:

print("*")
print("**")
print("***")

�E1.2

You can write the following code:

print("The sum of 10,15 and 25.5 is as follows:")
print(10+15+25.5)

Upon executing this program, you can see the following output:

The sum of 10,15 and 25.5 is as follows:
50.5

Chapter 1 Getting Ready

29

�E1.3

It depends. If a comment helps another developer to understand or review

your code, it has significant value. But you need to use your intelligence.

You do not want to include too many unnecessary comments to describe a

code that is easy to understand.

Additional note:
In the book Clean Code (Pearson), Robert C. Martin tells us the following:

“Comments are always failures. We must have them because we cannot

always figure out how to express ourselves without them, but their use is

not a cause for celebration.” This book continues, “Every time you express

yourself in code, you should pat yourself on the back. Every time you

write a comment, you should grimace and feel the failure of your ability of

expression.” Another great book is The Pragmatic Programmer by Andrew

Hunt and David Thomas. In this book, the authors tell us: “Programmers

are taught to comment their code: good code has lots of comments.

Unfortunately, they are never taught why code needs comments: bad code

requires lots of comments.”

These are good suggestions. However, you may not always agree with

these thoughts. You can find developers who can point to pros and cons on

both sides of the issue. Even the mentioned books show some examples of

both good and bad comments.

There are plenty of examples where the actual code is tricky or difficult

to understand. Some good, well-maintained comments can help a first-

time reader/developer. For me, comments can be useful because when

I hover my mouse over a built-in function in an IDE, the corresponding

comment helps me to understand the functionality better.

Chapter 1 Getting Ready

31© Vaskaran Sarcar 2025
V. Sarcar, Python Bootcamp, https://doi.org/10.1007/979-8-8688-1516-4_2

CHAPTER 2

Variables and
Operators
In this chapter, you will see some building blocks to help you develop your

Python programs. First, it discusses variables. Later, you’ll learn how to use

operators in your program.

�Understanding Variables
In mathematical algebra, you can write something like x=10. Then you say

x is a variable to represent the number 10. Python works in a similar way,

except that you can represent both numeric and non-numeric values using

variables.

�Assigning Variables
Assigning a value to a variable is one of the most basic operations in

programming. This section discusses the topic in detail.

�Assigning a Single Variable

Using an assignment operator, you can assign a value to a variable. For

example, you can assign the number 21 to the variable age as follows: age
= 21. Similarly, you can assign 5 to another variable, called students, as

follows: students = 5.

https://doi.org/10.1007/979-8-8688-1516-4_2#DOI

32

Once the variables are assigned, let’s execute the following code:

print(age)
print(students)

Now you’ll see that 21 and 5 are printed on the screen. It shows that the

variables are holding the intended values.

Look at the following line again: age = 21. You can see the variable

(age) is placed on the left-hand side of the assignment operator (=), and

the intended value is placed on the right-hand side of the assignment

operator. However, you’ll never see a code like

21=age # This is an error

If by mistake you do this, you’ll receive a syntax error. For your

reference, let me execute the code snippets that I just discussed in a

Python shell:

>>> age=21
>>> students=5
>>> print(age)
21
>>> print(students)
5
>>> 21=age
 File "<python-input-4>", line 1
 21=age
 ^^
SyntaxError: cannot assign to literal here. Maybe you meant
'==' instead of '='?

ChapTer 2 VarIables and operaTors

33

If, by mistake, you try to print the value of a variable, say, b, which has

not been defined already, you’ll see the error as well. Here is a sample:

>>> b
Traceback (most recent call last):
 File "<python-input-16>", line 1, in <module>
 b
NameError: name 'b' is not defined

�Are x=y and y=x the Same?

If you are coding for the first time, you may be confused about the usage

of the assignment operator. Let me explain. From a mathematical point of

view, it may appear to you that both the statements x=y and y=x have the

same meaning, but in programming, they are different.

�Demonstration 2.1

To make it clear, you can do a small test using the following code segment

in the Python shell:

x=25
y=50
print("Initial values of x and y:")
print(x)
print(y)
x=y # assigning the current value of y to x
print("After the assignment, x and y are as follows:")
print(x)
print(y)

ChapTer 2 VarIables and operaTors

34

�Output

Once you run this code, you’ll see the following output:

Initial values of x and y:
25
50
After the assignment, x and y are as follows:
50
50

�Analysis

You can see that initially, x was 25. But once you use the line of code x=y,

the current value of y is assigned to x. So, when you print the value of x

again, you get 50.

Let’s replace the line x=y with the line of code y=x in the previous code

segment. Run this code again. You’ll see the following output:

Initial values of x and y:
25
50
After the assignment, x and y are as follows:
25
25

You can see that the statements x=y and y=x can have different

meanings in Python programming.

Author's note: Apart from the = operator, there are many other

assignment operators. Later, you’ll be familiar with them.

ChapTer 2 VarIables and operaTors

35

�Assigning Multiple Variables in a Single Line

In Python programming, you can assign multiple variables in one

statement. For example, instead of writing the following two lines of code

age=21
students=5

you can write a single line as follows:

age, students=21,5

You can see that when you used the line of code age, students = 21, 5,

the values 21 and 5 were assigned to age and students variables, respectively.

A tuple is a comma-separated list of expressions. So you can say that in the

previous example, age and students form one tuple, and 21 and 5 form

another tuple. We refer to this assignment process as a tuple assignment.

Note  You will learn more about tuples in Chapter 6.

�Assigning the Same Value to Multiple Variables

Now, let us explore another interesting feature in Python programming.

You can assign the same value to multiple variables in one statement.

For example, using the following code snippet, you can assign all three

variables (x, y, and z) the same value (5):

x=y=z=5

ChapTer 2 VarIables and operaTors

36

This is why the following code

x=y=z=5
print(x)
print(y)
print(z)

will print the same value 5 three times as follows:

5
5
5

�Is the Print Function Mandatory?

The interactive Python shell can test both expressions and statements. For

example, if you type 21, the shell can interpret it as 21. See the following

segment:

>>> 21
21

But when you enter age=21 in the Python shell, it is treated as a correct

syntactical statement with no value, and the shell prints nothing. In the

next line, when you enter age, the shell can print the corresponding value.

This is why it is important to note that in the Python shell, when you print

the values, instead of typing print(age), you can simply type age to get the

value of age.

By default, you may not observe this behavior when you try to execute

this as a program in PyCharm IDE. For example, try to run a program that

has the following lines in the PyCharm IDE:

age=21
age

ChapTer 2 VarIables and operaTors

37

In this case, you'll not see any output. Here is a sample snapshot after

running this program (notice the arrow tips in Figure 2-1).

Figure 2-1.  Executing the program produces no output

Interestingly, PyCharm has an embedded terminal emulator. It helps

you work with the command-line shell from inside the IDE. So, if you like

to see the output (as you saw when I executed the code in the interactive

shell), you can launch the “Terminal” from View ➤ Tool Windows ➤

Terminal in the PyCharm IDE and type your code. Here is a sample

screenshot for your reference where the arrow tip shows the terminal

location (see Figure 2-2).

ChapTer 2 VarIables and operaTors

38

Figure 2-2.  Using PyCharm's terminal emulator

Author's note: To know more about the terminal emulator, visit the link

https://www.jetbrains.com/help/pycharm/terminal-emulator.html.

�Types of Variables
The online link https://docs.python.org/3/library/stdtypes.
html# mentions the major built-in types in Python. These are numerics,

sequences, mappings, classes, instances, and exceptions. As you progress,

you’ll get to know them. Based on your application, you may need to work

with other types as well. You can assign different values to these variables

using an assignment operator. For now, let us have a quick look at a set

of variables that represent different data types. (I have also pointed their

category inside the square bracket.)

ChapTer 2 VarIables and operaTors

https://www.jetbrains.com/help/pycharm/terminal-emulator.html
https://docs.python.org/3/library/stdtypes.html
https://docs.python.org/3/library/stdtypes.html

39

Example of an int variable [Numeric type]
age=21

Example of floating-point number variable [Numeric type]
book_price=30.5

Example of a list (of employee names) [Sequence type]
employee_names=["Sam","Bob","Jack"]

Example of a tuple (these are immutable) [Sequence type]
popular_fruits=("Banana","Apple","Orange","Mango")

Example of a dictionary (it is a key-value pair)
[Mapping type]
Wimbledon_titles=["Federer":8, "Djokovic": 7]

POINT TO NOTE

Do not worry! As you progress, you'll become familiar with them. I believe that

in most cases, you'll need strings (you can consider them as sequences of

texts), numbers, Booleans, sequences (such as lists, tuples, and range objects),

and dictionaries. In the following sections, for your easy understanding, I'll

use only the string and number variables. You’ll learn more about them in the

next chapter (Chapter 3). I'll discuss lists, tuples, and dictionaries in a separate

chapter (Chapter 6).

Now I am about to execute a few lines of code. I execute them in

PyCharm’s terminal emulator. In fact, now onward when you see >>>,
you understand that I am doing the same. Examine the following code:

>>> number=25
>>> type(number)
<class 'int'>

ChapTer 2 VarIables and operaTors

40

You can see that the number 25 is an int type.

Now, examine the following code (notice that the number has a

fractional part now):

>>> number=25.0
>>> type(number)
<class 'float'>

You can see that number is a float now.

You can see that 25 belongs to the int type, but 25.0 belongs to

the float type. By executing these code segments, you can see that
the Python interpreter can determine the type of data that you are
working on.

�Q&A Session

Q2.1 I am new to programming. I do not see any difference between 25
and 25.0. However, I see that they belong to different types. So I'd like to
know: how does the int type differ from the float type?
The int type represents the whole numbers; they do not have fractional

parts. We call them integers. An integer can be positive, negative, or 0. For

example, 23, -32, 67, -2, 0, and 25 are examples of integers. In Python, we

represent integers with the int data type.

In contrast, 35.75, 45.2, etc. are not integers because they have

fractional parts. These are floating-point numbers. In Python, you simply

call them the float data type.

�Reassigning Variables
Once you assign a value to a variable, you can reassign it again. To test this,

let us see the following code snippet along with the output:

>>> age=21
>>> print(age)

ChapTer 2 VarIables and operaTors

41

21
>>> age=22
>>> print(age)
22

You can see that the initial value (21) of the age variable is successfully

updated to 22 after the reassignment.

�Reassigning Can Change the Type

Note that the type of variable can change if you reassign an expression with

a different type. Let’s examine the following code along with the output:

>>> number=25
>>> type(number)
<class 'int'>
>>> number=25.1
>>> type(number)
<class 'float'>

You can see that when I changed the number 25 to 25.1, its type was

changed from int to float. This example shows that Python allows you to

redeclare a variable with a different type.

�Demonstration 2.2

Now you know how to use a variable. You have also learned how to assign

a value to a variable and reassign a new value to it. Let us test these

understandings by the following program that uses a variable named

hello_msg. The hello_msg was assigned an initial value “Hello World!”,

which is updated later in the program. I also kept the simple comments in

this program for your easy understanding. Here is the new program:

print("This program shows the use of a variable.")
hello_msg is holding the value "Hello World!"

ChapTer 2 VarIables and operaTors

42

hello_msg = "Hello World!"
print(hello_msg)
Reassigning a new value to hello_msg
hello_msg = "Dear Reader, how are you?"
print(hello_msg)

�Output

Upon executing this program, you should see the following output:

This program shows the use of a variable.
Hello World!
Dear Reader, how are you?

�Q&A Session

Q2.2 When you use the variable hello_msg, you need to write two
lines of code to print: Hello World! However, if I write: print(″Hello
World!″), I get the same output. Then why should I write more code
using variables?
Real-world programming consists of many lines of code. In those cases,

variables help you incorporate a change easily. To illustrate, if you execute

the following code

message="Hello,"
greet_sam= message + "Sam!"
greet_jack= message + "Jack!"
print(greet_sam)
print(greet_jack)

you’ll see the output

Hello,Sam!
Hello,Jack!

ChapTer 2 VarIables and operaTors

43

Now, if you change the message variable in the previous code

as follows

message="Hi,"

you’ll see the following output:

Hi,Sam!
Hi,Jack!

You can see you changed the code in one place, but the intended

change is reflected in all the lines in the output. In real-world

programming, this type of update is common. It is often useful as well.

Q2.3 "…this type of update is common. It is often useful as well." Can
you give me a real-world example?
You can use a variable in your application to display the current date and

time. You understand that the value of the variable will keep changing.

�Naming Conventions
As you dive deep into Python programming, I recommend you follow the

official naming convention. I often visit the online page https://peps.
python.org/pep-0008/ whenever I have a doubt. In this context, I’d like to

highlight the following points when you use variables in your program.

In real-world applications, you should try to avoid one-character
variable names. Instead, you should use meaningful and descriptive
names for your variables. For example, to assign an identification number

(say, 5) to an employee in an organization, you can write something like

employee_id=5 instead of e=5.

ChapTer 2 VarIables and operaTors

https://peps.python.org/pep-0008/
https://peps.python.org/pep-0008/

44

Note N ormally, the one-character variable names are used for
demonstration purposes, which are easy to understand. In addition,
you may see them in loops or functions that you'll learn in later
chapters.

The online link https://peps.python.org/pep-0008/#naming-
conventions also suggests the following:

Never use the characters ‘l’ (lowercase letter el), 'O' (uppercase
letter oh), or ‘I’ (uppercase letter eye) as single character vari-
able names. In some fonts, these characters are indistinguish-
able from the numerals one and zero. When tempted to use 'l',
use 'L' instead.

Your variable name should not clash with Python keywords.

A keyword is a reserved word. So you cannot use them as ordinary

identifiers. You can refer to the online link https://docs.python.org/3/
reference/lexical_analysis.html#keywords to learn about the latest

keywords. For your immediate reference, I include them here:

False await else import pass
None break except in raise
True class finally is return
and continue for lambda try
as def from nonlocal while
assert del global not with
async elif if or yield

Note T he previous link also talks about lexical analysis, tokens,
identifiers, soft keywords, and many other things. for now, I am trying
to make things as simple as possible for you.

ChapTer 2 VarIables and operaTors

https://peps.python.org/pep-0008/#naming-conventions
https://peps.python.org/pep-0008/#naming-conventions
https://docs.python.org/3/reference/lexical_analysis.html#keywords
https://docs.python.org/3/reference/lexical_analysis.html#keywords

45

So, if you write for=25, you’ll get an error. Here is a sample for you:

>>> for=25
 File "<python-input-2>", line 1
 for=25
 ^
SyntaxError: invalid syntax

Python has many built-in functions. Your variable name should not

clash with those names as well. For example, in Python, you can use the

abs function to calculate the absolute value. Here are some examples.

>>> abs(25.9)
25.9
>>> abs(-25.9)
25.9
>>> abs(10-2.5)
7.5

However, you should not use something like abs=10. However,

let’s say, by mistake, you used abs=10 earlier in your code. Now, if you

call abs(12.7), a Python shell will show you an error. Let’s see the

following sample:

>>> abs=10
>>> abs(12.7)
Traceback (most recent call last):
 File "<python-input-8>", line 1, in <module>
 abs(12.7)
    ~~~^^^^^^
TypeError: 'int' object is not callable

ChapTer 2  VarIables and operaTors



46

A similar error may appear if you write something like abs=52.7 and 

then you try to call abs(12.7). Here is a code fragment:

>>> abs=52.7
>>> abs(12.7)
Traceback (most recent call last):
  File "<python-input-10>", line 1, in <module>
    abs(12.7)
    ~~~^^^^^^
TypeError: 'float' object is not callable

Both the errors are similar. The only difference is that in the first case, it

complains about the int, but in the next case, it complains about a float.

It is obvious because you know that 52.7 is a floating-point number, but

10 is an integer. So you understand that this kind of error tries to say that

you have used abs before this call. A simple remedy to this is to exit from

the shell (or remove the erroneous variable naming practice) and try to

use the built-in function again. Let me capture the code fragment from the

PyCharm Terminal Window shell for your reference:

>>> abs(12.7)
Traceback (most recent call last):
 File "<python-input-8>", line 1, in <module>
 abs(12.7)
TypeError: 'int' object is not callable
>>> abs=52.7
>>> abs(12.7)
Traceback (most recent call last):
 File "<python-input-10>", line 1, in <module>
 abs(12.7)
    ~~~^^^^^^
TypeError: 'float' object is not callable
>>> exit()

ChapTer 2  VarIables and operaTors



47

(.venv) PS E:\MyPrograms\PythonBootcamp> py
Python 3.13.0 (tags/v3.13.0:60403a5, Oct  7 2024, 09:38:07) 
[MSC v.1941 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more 
information.
>>> abs(52.7)
52.7

You can see that I exited from the shell and then re-entered. This 

activity deleted the old assignments. This time I did not perform the illegal 

variable naming practice either. So the built-in function abs() started 

functioning again.

The online link https://peps.python.org/pep-0008/#naming-
conventions mentions the following:

The naming conventions of Python’s library are a bit of a mess, 
so we’ll never get this completely consistent  – nevertheless, 
here are the currently recommended naming standards. New 
modules and packages (including third party frameworks) 
should be written to these standards, but where an existing 
library has a different style, internal consistency is preferred.

The previous link talks about several naming conventions, and you 
can follow any of them. For example, to name a student, you can use your 

variable name as

studentname (lowercase)

studentName (lower camel case)

StudentName (upper camel case, also known as 

Pascal case)

student_name (snake style; words are separated by 

an underscore)

ChapTer 2  VarIables and operaTors

https://peps.python.org/pep-0008/#naming-conventions
https://peps.python.org/pep-0008/#naming-conventions


48

Student_name (also a snake style, but the first word 

starts with a capital letter)

STUDENTNAME (uppercase)

Variable names can be alphanumerical, but the first character 
must be a letter. For example, student_1 and student1 are both fine, 

but 1student or 1_student will raise an error. Here is a sample for your 

reference:

SyntaxError: invalid syntax
>>> student_1="John"
>>> student_1
'John'
>>> 1_student="John"
  File "<python-input-4>", line 1
    1_student="John"
     ^
SyntaxError: invalid decimal literal

You can use an underscore in your variable name, but other special 
characters can raise an error in your program. For example, if you use @ 

inside your variable name, you’ll receive an error. Here is an example:

>>> student@name="Jack" 
  File "<python-input-4>", line 1
    student@name="Jack"
    ^^^^^^^^^^^^
SyntaxError: cannot assign to expression here. Maybe you meant 
'==' instead of '='?

The variable name should not start or end with an underscore. 
Though you do not see any error for that, experts strongly discourage 
this practice. For example, you should not use something like _student = 
"John" or student_= "John".

ChapTer 2  VarIables and operaTors



49

�Q&A Session

Q2.4 Among these accepted naming conventions, which one is your 
favorite?
I like to use the form that uses lowercase with underscores, which is 

something like the following:

student_name= "Jack"

I recommend the same practice to you.

Q2.5 Can I combine multiple variables?
You can combine two variables if they belong to the same data type. See 

the following segment:

>>> 2+5
7
>>> "Hi,"+ "Jack"
'Hi,Jack'

However, you cannot combine variables if they belong to different data 

types. Let’s see the following segment:

>>> "2"+5
Traceback (most recent call last):
  File "<python-input-0>", line 1, in <module>
    "2"+5
    ~~~^~
TypeError: can only concatenate str (not "int") to str

Or see the following segment:

>>> 5+"2"
Traceback (most recent call last):
 File "<python-input-10>", line 1, in <module>

ChapTer 2 VarIables and operaTors

50

 5+"2"
 ~^~~~
TypeError: unsupported operand type(s) for +: 'int' and 'str'

How can you overcome this situation? Let me give you a clue: before

combining, you need to ensure that you are working on the same data

type. For example, if you want to add two numbers, you need to ensure

that both are true numbers. Similarly, if you want to concatenate two

strings, make sure that you are working on strings only. The next chapter

discusses strings and numbers in more depth, and you’ll learn to use built-

in functions. For now, let me show you a sample fix for the incorrect code

segments that you have just seen:

>>> "2"+str(5)
'25'
>>> 5+int("2")
7

�Operators
Operators are special symbols that are used to carry out some kind of

assignment or computations. These operators work on some values, which

are termed operands. For example, in the expression 2+3, + is an operator,

and 2 and 3 are the operands.

Note I n simple terms, a literal value, say 5, or a variable, say
empId, is an example of simple expressions. You can combine values,
variables, operators, etc. to make a complex expression. If you type
an expression at the prompt, you'll see that the Python interpreter
evaluates the value of the expression and displays the result.

ChapTer 2 VarIables and operaTors

51

�Types
You have seen how to assign a value to a variable using an assignment

operator (=). Python supports many other operators such as

•	 Arithmetic operators

•	 Assignment operators

•	 Comparison operators

•	 Logical operators

•	 Bitwise operators

•	 Identity operators

•	 Membership operators

If you have a strong mathematical background or you are already

familiar with a different programming language, you’ll find that many of

these operators are common and have the usual meaning. I assume that

you know them. However, if you’d like to be familiar with them in detail, I

recommend you to visit Appendix A, which includes examples of various

operators.

�Precedence of Operators
In programming, you often deal with expressions that contain one or more

operators. To evaluate those expressions, you need to understand the

order of operations. For the common mathematical operations, you can

remember the acronym PEMDAS. Let’s understand it with examples:

Parentheses have the highest precedence (interestingly, they are not

an operator). Using parentheses, you can control the order of executions.

Here is a sample:

>>> 2*(3+1)
8

ChapTer 2 VarIables and operaTors

https://doi.org/10.1007/979-8-8688-1516-4

52

You can see that 3+1 was evaluated first, and then it was multiplied by

2 to produce the value 8. However, without parentheses, the expression

will be evaluated to 7. See the following:

>>> 2*3+1
7

Exponentiation has the next highest precedence. See the following:

>>> 3+2**3
11

You can see that 3+2**3 evaluates to 11, but not to 5**3, i.e., 125.

Then comes Multiplication and Division. They have higher precedence

than Addition and Subtraction. Let’s verify this statement by evaluating

some expressions:

>>> 1+2*3
7
>>> 5-4/2
3.0

Now let me show you the precedence of some of the common

operators in decreasing order in the following table (see Table 2-1).

ChapTer 2 VarIables and operaTors

53

Table 2-1.  Operator precedence of some of the common operators

Operator Symbol/Operation

Parentheses ()

Exponentiation **

Division, Multiplication, Remainder, floor Division /, *, %, //

Addition, Subtraction +, -

Bitwise AND &

Bitwise XoR ^

Bitwise oR |

Relational operators >, >=, <, <=, = =, !=

Boolean NoT not x

Boolean AND and

Boolean oR or

Conditional expression if-else

POINT TO NOTE

If interested, you can look into the official documentation (see https://
docs.python.org/3/reference/expressions.html) to know the

precedence of the remaining operators. Since you can always control the
order of execution using parentheses, you do not need to memorize the
precedence table. This official link has a footnote section that discusses

some typical corner cases as well. However, I want you to have a basic idea

about operator precedence. It can help you avoid any future confusion while

evaluating an expression.

ChapTer 2 VarIables and operaTors

https://docs.python.org/3/reference/expressions.html
https://docs.python.org/3/reference/expressions.html

54

Let us verify this table by evaluating some simple expressions.

Let’s start.

Example 1:

>>> 3*4**2+2
50

Explanation:
In this expression, ** has the highest precedence. So 4**2 computes first,

and we get 16. The resultant expression becomes 3*16+2.
In the previous expression, * has the highest precedence. So 3*16 will

compute now, and you get 48.
Now the expression becomes 48+2, which produces the result: 50

Example 2:

>>> 3&5
1
>>> 2+(3&5)
3
>>> 2+3&5
5

Explanation:
As per the precedence table (see Table 2-1) shown earlier, arithmetic

operators have higher precedence than bitwise operators. So the 2+3&5

evaluates as follows:

2+3&5
=(2+3)&5
=5&5
=5

Author's note: If you’re seeing a bitwise operator for the first time, you can

read it from the online link: BitwiseOperators - Python Wiki.

ChapTer 2 VarIables and operaTors

https://wiki.python.org/moin/BitwiseOperators

55

�Operators Associativity
An expression can contain operators that have the same precedence. Most

of the operators, except the exponential operator (**), evaluate from left to

right. Let’s see some examples:

Example 3:

>>> 5*8%6
4

Explanation:
Here * and % have the same precedence, and they both evaluate from left. So

5*8%6 becomes 40%6, which is 4. Notice that if you evaluate 8%6 first, you’ll

get the final result as 5*2=10, which is not correct. However, as said before,

by using parentheses, you can control the order of evaluation as follows:

>>> 5*(8%6)
10

Example 4:

>>> 10*2//3
6

Explanation:
In this expression, * and // have the same precedence. Also, both evaluate

from the left. So 10*2//3 becomes 20//3, which is 6. However, 10*(2//3)

results in 0.

Example 5:

>>> x,y,z = 10,20,30
>>> (x<y) & (y>z)
False
>>> (x<y) | (y>z)
True

ChapTer 2 VarIables and operaTors

56

Explanation:
Here I present this example to show that you can apply bitwise operators

on conditional statements (that includes comparison operators). Here, x<y

is True, but y>z is False. And True & False results False, but True | False

results True.

Author's note: It is helpful to note that by using the assignment operator,

when you write something like x=5, the expression evaluates from right

to left.

�Q&A Session

2.6 You often used the word "expression." How does it differ from a
statement?
A Python expression is a combination of one or more things, such as

values, variables, and operators. In fact, a value itself is an expression. The

same is true for a variable as well. For example, in the following sample, I

evaluate the expressions x, x+5, and 100:

>>> x=7
>>> x
7
>>> x+5
12
>>> 100
100

You can see that once these expressions are entered in the terminal,

the interpreter evaluates these expressions and finds the value of those

expressions.

On the other hand, a statement is something that creates an effect, for

example, when you print something on the screen or assign a value to a

variable. For example, in the following sample, print("Hello") and x=5

are statements.

ChapTer 2 VarIables and operaTors

57

>>> print("Hello")
Hello
>>> x=5

In other words, statements are instructions that the Python interpreter

can execute. Normally, statements do not have values.

Till now, you have seen the assignment statements. Once you complete

this book, you’ll be familiar with many different statements such as if

statements, while statements, and import statements.

�Summary
This chapter discussed the usage of variables and operators in your

program. In brief, it answered the following questions:

•	 How can you assign and reassign a value to a variable?

•	 How can you launch PyCharm’s terminal emulator and

work with the command-line shell?

•	 How should you name your variables?

•	 What is the difference between an expression and a

statement?

•	 How can you evaluate an expression by controlling the

order of execution?

�Exercise 2
E2.1 Predict the output:

x='10.2'
print('x')
print(x)

ChapTer 2 VarIables and operaTors

58

E2.2 Predict the output:

x=25
print(x)
print(y)

E2.3 Can you assign two different data types in a single line?
E2.4 Identify the invalid statements among the following:

i)abc=1
ii)if=2
iii)$fi=3
iv)_public=4
v)abc$=5
vi)bob's=6
vii)emp_id=7
viii)emp id=8

E2.5 Predict the output of the following expressions:

i) 2+3*(36/9+1)**2-1
ii) 3+2&4|2

�Keys to Exercise 2
Here is a sample solution set for the exercises in this chapter.

�E2.1

You should see the following output:

x
10.2

ChapTer 2 VarIables and operaTors

59

�E2.2

You should see the following output:

25
Traceback (most recent call last):
 File "E:\MyPrograms\PythonBootcamp\chapter2\chapter2_
exercises.py", line 10, in <module>
 print(y) # error
 ^
NameError: name 'y' is not defined

�E2.3

Yes. Here is a sample where I assigned an integer and a string in a single

line, and later, I printed their values:

x, y = 1, "hello"
print(x)
print(y)

�E2.4

The answers are shown using inline comments in bold:

abc=1 # OK
if=2 # Error
$fi=3 # Error
I = 4 # It will work, but not recommended
abc$=5 # Error
bob's=6 # Error
emp_id=7 # OK
emp id=8 # Error

ChapTer 2 VarIables and operaTors

60

�E2.5

Here are the answers with the explanations:

i)

>>> 2+3*(36/9+1)**2-1
76.0

Explanation:
In this expression, () has the highest precedence. So (36/9+1) computes

first. In this sub-expression, / has higher precedence than +. So it results in

4.0+1=5.0, and the resultant expression becomes 2+3*5.0**2-1
In this expression, ** has the highest precedence. So 5.0*2 will

compute now. It results in 25.0, and the resultant expression becomes

2+3*25.0-1
In this expression, * has the highest precedence. So 3*25.0 will

compute now. It results in 75.0, and the resultant expression becomes

2+75.0-1
Now + and – have the same precedence in the resultant expression.

Both these operators are left-associative (evaluates from left to right).

So the addition will be done first, and the resultant expression becomes

77.0-1, which produces the final output as 76.0.

ii)

>>> 3+2&4|2
6

ChapTer 2 VarIables and operaTors

61

Explanation:
In this expression, + has the highest precedence, then &, and then |. So the

expression evaluates as follows:

3+2&4|2
=5&4|2
=4|2
=6

ChapTer 2 VarIables and operaTors

63© Vaskaran Sarcar 2025
V. Sarcar, Python Bootcamp, https://doi.org/10.1007/979-8-8688-1516-4_3

CHAPTER 3

Simple Data Types
Python has many data types. In Chapter 2, you were introduced to some of

them. As a beginner, to proceed further, you need to be very much familiar

with strings, numbers (particularly integers and floating-point numbers),

and Booleans. These are the primitive data types, and you see them in

almost every program. This chapter quickly covers them along with some

useful built-in functions.

POINT TO NOTE

In this book, while saying numbers, I mean the numeric types: integers and

floating-point numbers collectively. This chapter also shows code snippets

using booleans that are subtypes of integers. remember that python

supports another numeric type called complex numbers. students from the

mathematical background know that complex numbers have a real and an

imaginary part. In addition, the standard library supports additional numeric

types, such as fractions.Fraction, for rationals, and decimal.Decimal, for

floating-point numbers with user-definable precision. however, to make

things simple, this chapter discusses the code samples that deal with strings,

integers, floating-point numbers, and booleans only.

https://doi.org/10.1007/979-8-8688-1516-4_3#DOI

64

�Strings
Strings can be created with single, double, or triple quotes. These are

nothing but a sequence of characters. They can also contain symbols,

numbers, whitespace, and even empty space between the quotes. It is also

possible to embed one type of quote into another. Let me show you some

examples:

•	 Using single quotes: 'This is truly beautiful'

•	 Using double quotes: "This is truly beautiful"

•	 Using triple single quotes: '''This is truly beautiful'''

•	 Using triple double quotes: """This is truly beautiful"""

•	 Using double quotes inside single quotes: 'This is

"truly" beautiful'

•	 Using single quotes inside double quotes: "This is

'truly' beautiful"

�Playing with Strings
Now, I’ll show you some common use cases of strings. Let’s go through the

following code fragments where the goals are mentioned in the comments.

Note  download ch03_string_usage_file.py from the apress
website to verify the code segments. Instead of creating separate
files for each of these small code segments, I placed them into a
single file. I also keep the comments for your reference. If you want,
you can write each segment in separate files, or you can simply
execute them in a python shell. all are fine.

Chapter 3 siMple data TYpes

65

Code:

I want to print a character, say hash(#) 10 times.

print("#"*10)

Output:

##########

Additional note:
I use this approach in various examples and projects in this book to decorate

top borders and bottom borders. This statement prints the hash symbol (#)

ten times. In the same way, you can use print(“-”*15) to print the character

“–” 15 times. What is the benefit? You can write concise code with less typing.

Code:

I want to use some control codes (for example, \t and \n)
within a string.

print("How\tare\you?")
print("Hello\nWorld!")

Output:

How are you?
Hello
World!

Additional note:
Strings can include special characters (often termed control codes)

preceded by a backslash (\). This example shows you the use of \t and \n.

You can see that when I used \n in the string Hello\nWorld!, the character

“n” was escaped, and the text cursor moved down to the next line.

Similarly, when I wanted to print a tab between letters, I used \t.

Chapter 3 siMple data TYpes

66

The \n and \t are very common in codes. Apart from these, there are

other facilities as well. For example, you can use \b for backspace and \a

for sounding a beep. But the behavior of \b and \a can vary. To illustrate,

let us use a Python command shell first:

>>> print("Abc\bd")
Abd

Now, execute the same line of code in IDLE. In this case, you see an

additional character between 'c' and 'd'

Code:

I want to print the word KFC inside single quotations.

print("'KFC'")

Output:

'KFC'

Code:

I want to print the word: HelloWorld! inside double-quotations
It is an example that shows the uses of an escape character.

print(" \"Hello World!\"")

Output:

"Hello World!"

Explanation:
Here, you simply tell Python to insert the character (which is a double

quotation in this case) after the backslash.

Additional note:
Here is an alternative code to print the same:

print(' "Hello World!" ')

Chapter 3 siMple data TYpes

67

However, if you try the following

print(""HelloWorld""); # Error

you will see a syntax error. Here is a sample:

 File "<python-input-11>", line 1
 print(""HelloWorld"")
 ^^^^^^^^^^^^
SyntaxError: invalid syntax. Perhaps you forgot a comma?

Code:

I want to print the sentence "Baseball is my favorite game"
using a string variable.

fav_game = "Baseball is my favorite game"
print(fav_game)

Output:

Baseball is my favorite game

�Using Built-In Functions
A function is a reusable block of code that performs a specific task, takes

inputs (parameters), processes them, and optionally returns a result.

Now, I’ll show you the usage of some built-in functions (more specifically,

methods). You can write your function(s), or you can use the built-in

functions that are already written in Python. By using the words “built-in

functions,” I mean that they are already available to serve your needs.

Note Y ou will see a detailed discussion on functions in Chapter 7 of
the book.

Chapter 3 siMple data TYpes

68

Now the obvious question is: how will you know about the available

functions? The use of an IDE can help you in this case. You know that I am

using the PyCharm IDE for this book. It gives me some special support

when I invoke (or call) the functions. Let’s assume that you have the

following code:

text1= "Python"

Now if you write text1 and then put a dot(.), you can see the available

functions. Here is a screenshot for you (see Figure 3-1).

Figure 3-1.  Showing built-in functions when you type a string
variable and put a dot (.)

Let us use some of these functions.

Chapter 3 siMple data TYpes

69

Code:

I want to concatenate multiple strings following different
approaches.
text1= "Python"
text2 = "programming language."
print(text1+" is a "+text2) # Using + to concatenate
print(text1,"is a",text2) # Using comma to concatenate
Using built-in format method
print("{} is a {}".format(text1, text2))
print(f"{text1} is a {text2}") # Using f-strings

Output:

Python is a programming language.
Python is a programming language.
Python is a programming language.
Python is a programming language.

Explanation:
You can concatenate strings in different ways. In this code sample, I
have shown you four different approaches. The first two approaches are

straightforward where I showed you the use of plus (+) and comma (,).

In earlier days, developers used the built-in format method. You can

see that I used curly braces {} in a string and created placeholders that the

format method filled with the provided values.

Finally, I used the f-strings that were introduced in Python 3.6. In

this approach, you put the letter “f” in front of a string and then inject

a variable into it. To inject a variable inside a string, you need to wrap it

inside the curly braces as shown in this example.

Chapter 3 siMple data TYpes

70

Code:

I want to print the word Cricket in uppercase and lowercase.

game = "Cricket"
print("The original string is:" + game)
Printing in uppercase
print(game.upper())
Printing text1 in lowercase
print(game.lower())

Output:

The original string is: Cricket
CRICKET
cricket

Explanation:
You can see the function upper() is converting the original string into

uppercase characters, and lower() is doing the opposite.

Code:

I want to use multiple functions together
hello_text = " Hello, Reader!"
print(f"The original string is:{hello_text}")
print(hello_text.upper().islower()) # False
print(hello_text.upper().isupper()) # True

Output:

The original string is: Hello, Reader!
False
True

Explanation:
This fragment of code shows that you can use multiple functions together.

For example, hello_text.upper().islower() performed two things:

Chapter 3 siMple data TYpes

71

At first, it executed hello_text.upper() which converted the string

into uppercase characters, and then it invoked the islower() function

on the resultant string. The islower() function verified whether the

string was in lowercase or not. Since the original string was converted to

uppercase characters already, it returned False.

The next line of code verified the reverse scenario. The isupper()

function is used to test whether the resultant string is in uppercase or not.

Before you invoked this function, you transformed the string to uppercase

characters. This is why this time, you see True in the output.

Code:

I want to calculate the length of a string.
text = "Python"
print(f" The length of the string {text} is {len(text)}")

Output:

The length of the string Python is 6

Explanation:
The len function is used to calculate the length of a string.

Code:

I want to examine the index positions of the characters
inside a string.
fruit = "Mango"
print(f"The fruit name is: {fruit}")
Printing individual characters inside the string
print(f"Index 0 contains: {fruit[0]}")
print(f"Index 1 contains: {fruit[1]}")
print(f"Index 2 contains: {fruit[2]}")
print(f"Index 3 contains: {fruit[3]}")
print(f"Index 4 contains: {fruit[4]}")

Chapter 3 siMple data TYpes

72

Output:

The fruit name is: Mango
Index 0 contains: M
Index 1 contains: a
Index 2 contains: n
Index 3 contains: g
Index 4 contains: o

Explanation:
Here, I have shown you all the index positions from 0 to 4. Notice that the

array indexing starts from the 0th position. So M, a, n, g, and n are stored at

index positions 0, 1, 2, 3, and 4, respectively. This is why fruit[0] prints

the first character M, fruit[1] prints the next character, and so on. You see

similar behavior in many other high-level languages, such as Java and C++.

Code:

I want to get the first occurrence of a character (or a word)
inside a string.
text = "abcABc"
print(f"The text is: {text}")
Printing individual characters inside the string
print(f"The first occurrence of 'A' is at index: {text.
index("A")}")
print(f"The first occurrence of 'c' is at index: {text.
index("c")}")
print(f"The first occurrence of 'bcA' is at index: {text.
index("bcA")}")

Output:

The text is: abcABc
The first occurrence of 'A' is at index: 3
The first occurrence of 'c' is at index: 2
The first occurrence of 'bcA' is at index: 1

Chapter 3 siMple data TYpes

73

Explanation:
As shown here, you can use the index() function to retrieve the first

occurrence of a particular character inside a string. Notice that inside

the string, we had two c’s; one is at index 2, and another is at 5. But

the function returns the index position 2. Also, I searched for the index

position of the combined characters bcA. So you can use the same function

to find a particular word inside a string too.

If the particular character (or substring) is not present inside the

string, you’ll see the error as well. For example, if you try to execute the

following line

print(text.index("z")) # This line will cause error

you’ll see the error. Here is a sample:

Traceback (most recent call last):
 File "E:\MyPrograms\PythonBootcamp\chapter3\string_usage_
file.py", line 96, in <module>
 print(text.index("z"))
          ~~~~~~~~~~^^^^^
ValueError: substring not found

The error message is self-explanatory. You see this error because the 

character z is not present inside the string abcABc.

Code:

# I want to examine a function that accepts multiple
# parameters. I'm using the replace function in this example.
text = " Hello, John!"
print(f"The initial text is:{text}")
print("Replacing the name 'John' with 'Bob' now.")
text = text.replace("John", "Bob")
print(f"The changed text is:{text}")

Chapter 3  siMple data TYpes



74

Output:

The initial text is: Hello, John!
Replacing the name 'John' with 'Bob' now.
The changed text is: Hello, Bob!

Explanation:
Notice that the replace function takes two arguments. I use the first one 

for the string that I replace, and the second one I use for the string that 

reflects the changed value. So, to change the name John to Bob, I have used 

text.replace(“John”, “Bob”), and I hold this changed value into the 

same string variable text.

�Q&A Session

Q3.1 Should I prefer single-quoted strings over double-quoted strings 
(or vice versa)?
The official documentation (see the online link https://peps.python.
org/pep-0008/#string-quotes) states the following:

In Python, single-quoted strings and double-quoted strings 
are the same. This PEP does not make a recommendation for 
this. Pick a rule and stick to it. When a string contains single or 
double quote characters, however, use the other one to avoid 
backslashes in the string. It improves readability.

For triple-quoted strings, always use double quote characters to be 

consistent with the docstring convention in PEP 257.

Q3.2 You have shown different approaches for string concatenation. 
Among them, which one is your favorite?
The use of f-strings is my favorite approach. For me, it is easy to read and 

understand.

Chapter 3  siMple data TYpes

https://peps.python.org/pep-0008/#string-quotes
https://peps.python.org/pep-0008/#string-quotes


75

�Numbers
Similar to strings, to print a number without a variable, you can just type 

the number inside the print() function. See the following code segment 

with inline comments:

print(1) # Prints 1
print(5.7) # Prints 5.7
print(-6.789) # Prints -6.789

The following code shows how to use the number variables (see that 

there are no quotes while you assign the numbers to the variables):

# Using numeric types
number_of_pens=15
print(number_of_pens) # Prints 15
weight=65.3
print(weight) # Prints 65.3

�Playing with Numbers
Let us examine some common use cases of numbers. Go through the 

following code fragments where the goals are mentioned in the comments.

Note Y ou can download ch03_numbers_usage_file.py from the 
apress website to verify the code segments.

Code:

# Performing some basic arithmetic operations
# The corresponding outputs are shown in comments

print(1+2) # Prints 3
print(100-79) # Prints 21

Chapter 3  siMple data TYpes



76

print(25* 3) # Prints 75
print(12.88/4) # Prints 3.22

Code:

# Performing some complex arithmetic operations
# The corresponding outputs are shown in comments

print(1+2*3) # Prints 7
print((1+2)*3) # Prints 9
print(4/2**3)  # Prints 0.5
print((4/2)**3)  # Prints 8.0

Explanation:
In Chapter 2, you learned about the precedence and associativity of 

operators. There, you learned that * has higher precedence than + and ** 

has higher precedence than /. However, as shown, the parentheses can be 

used to control the order of execution.

Code:

# Showing the difference between the numbers and strings

string1="10"
string2 = "22"
number1=10
number2=22
print(string1+string2) # Prints 1022
print(number1+number2) # Prints 32

Output:

1022
32

Chapter 3  siMple data TYpes



77

Explanation:
The plus (+) operator concatenates the strings, but for numbers, it adds them.

Code:

# Improving the readability of big numbers (using underscores)

annual_income=12_000_000
print(annual_income)

Output:

12000000

Explanation:
You can see that the digit is printed without the underscores.

Code:

# I want to concatenate a string and a number following 
# different approaches.

text1= "Python version:"
version=13.0
print("I'm using",text1, version) # Using comma to concatenate
# Using + to concatenate
print("I'm using "+text1+" "+ str(version))
# Using a built-in method
print("I'm using {} {}".format(text1, version))
print(f"I'm using {text1} {version}") # Using f-strings

Output:

I'm using Python version: 13.0
I'm using Python version: 13.0
I'm using Python version: 13.0
I'm using Python version: 13.0

Chapter 3  siMple data TYpes



78

Explanation:
Already you have seen different approaches for string concatenation. By 

following the same approaches, this time you concatenated a string with 

a number.

Code:

# I want to convert strings to integers
# Here I test decimal, binary, and hexadecimal numbers

decimal_number_string="8"
binary_number_string="101"
hexadecimal_number_string="B"
print(int(decimal_number_string)) # Prints 8
print(int(decimal_number_string,10)) # Prints 8
print(int(binary_number_string,2)) # Prints 5
print(int(hexadecimal_number_string,16)) # Prints 11

Output:

8
8
5
11

Explanation:
This example shows you how to convert a string to a number using the 

int function. You can also see that this function can handle numbers with 

different bases.

Additional note:
However, not all strings are convertible to an integer. For example, see the 

following:

>>> invalid_number="abc"
>>> print(int(invalid_number, 10))

Chapter 3  siMple data TYpes



79

Traceback (most recent call last):
  File "<python-input-5>", line 1, in <module>
    print(int(invalid_number, 10))
          ~~~^^^^^^^^^^^^^^^^^^^^
ValueError: invalid literal for int() with base 10: 'abc'

�Using Built-In Functions
Let’s examine some other built-in functions for numbers now.

Code:

Testing whether a given string is a digit string

print(f"Is 25 a valid number? {"25".isdigit()}")
print(f"Is 'abc' a valid number? {"abc".isdigit()}")

Output:

Is 25 a valid number? True
Is 'abc' a valid number? False

Explanation:
You can use the isdigit() function to test whether the string is a digit

string. For example, if you execute the following code segment

print(f"Is 25 a valid number? {"25".isdigit()}")
print(f"Is 'abc' a valid number? {"abc".isdigit()}")

you’ll receive the following output:

Is 25 a valid number? True
Is 'abc' a valid number? False

If you use the PyCharm IDE, when you move your cursor on the

function, you can see the function definition easily. For your easy

Chapter 3 siMple data TYpes

80

reference, let me take the screenshot from this IDE when I move my cursor

on the isdigit() function (see Figure 3-2).

Figure 3-2.  Retrieving the details of the isdigit function from the
PyCharm IDE

Alternatively, you can press the keyboard shortcut Ctrl+Alt+B and

retrieve the details from the builtins.py file as shown in the following

figure (see Figure 3-3).

Figure 3-3.  Retrieving the details of the isdigit function using the
shortcut keys

Chapter 3 siMple data TYpes

81

This type of simple activity can make your programming life easy. This
is another valid use case, which shows the effectiveness of an IDE over a
normal Python shell. Let us continue our exercises.

Code:

Rounding a few numbers
print(round(2.51))
print(round(5.32))

Output:

3
5

Code:

Finding the maximum number
print(f"Maximum of 1,2,3,4 and 5 is: {max(1,2,3,4,5)}")

Finding the minimum number
print(f"Minimum of 1,2,3,4 and 5 is: {min(1,2,3,4,5)}")

Output:

Maximum of 1,2,3,4 and 5 is: 5
Minimum of 1,2,3,4 and 5 is: 1

Explanation:
You can see the max function is used to find the greatest among the

numbers, and the min function is used to find the smallest among the

numbers.

�Importing the math Module
In Chapter 7, you’ll learn about modules and see import statements. Using

an import statement, you make the previously written codes available in

Chapter 3 siMple data TYpes

82

a current file. Since you are seeing the use of some common functions,

let me import the mathematical functions and exercise some of those

functions. These mathematical functions are available inside the math

module. To use those functions, at the top of the exercise file, let’s write the

following:

from math import *

You understand that the previous line of code is important. Otherwise,

you cannot use (or access) these functions. Let us use some of them in the

following code fragments.

Code:

Printing the square root of 25
print(f"The square root of 25 is: {sqrt(25)}")
Printing the square root of 6.24
print(f"The square root of 6.24 is: {sqrt(6.24)}")

Output:

The square root of 25 is: 5.0
The square root of 6.24 is: 2.4979991993593593

Code:

Finding the ceiling value
This is the smallest integer that is greater than
or equal to the given number.

print(f"The ceiling value of 39.3 is: {ceil(39.3)}")

Finding the floor value
This is the largest integer that is less than
or equal to the given number.
print(f"The floor value of 39.3 is: {floor(39.3)}")

Chapter 3 siMple data TYpes

83

Output:

The ceiling value of 39.3 is: 40
The floor value of 39.3 is: 39

Code:

Finding the greatest common divisor (gcd) of 4 and 14
print(f"The gcd of 4 and 14 is: {gcd(4,14)}")

Finding the gcd of 14 and 63
print(f"The gcd of 63 and 14 is: {gcd(63,14)}")

Output:

The gcd of 4 and 14 is: 2
The gcd of 63 and 14 is: 7

Code:

Finding the factorial of 5
print(f"The factorial of 5 is: {factorial(5)}")

Finding the factorial of 7
print(f"The factorial of 7 is: {factorial(7)}")

Output:

The factorial of 5 is: 120
The factorial of 7 is: 5040

Explanation:

The factorial of 5 is: 5*4*3*2*1=120
The factorial of 7 is: 7*6*5*4*3*2*1=5040

Chapter 3 siMple data TYpes

84

�Booleans
The Boolean data type can have either a True or a False value. You can

consider it as a switch that is either on or off. Let’s have a look at them:

>>> a=True
>>> b=False
>>> type(a)
<class 'bool'>
>>> type(b)
<class 'bool'>

You can see that both a and b are of bool type that is used to denote the

Boolean variables.

�Playing with Booleans
Let’s begin with the following snippet, which is very easy to understand:

>>> a=10
>>> b=5
>>> a>b
True
>>> a<b
False

Once you learn about the conditional statements in the next chapter,

you can write the following program:

a=10
b=5
if a>b:
 print(f"{a} is greater than {b}")

Chapter 3 siMple data TYpes

85

else:
 print(f"{a} is less than or equal to b")

Upon executing the program, you’ll see the following output:

10 is greater than 5

It is easy to understand that since the if statement (a>b) becomes True,

you see this output.

You can directly assign True (or False) to a variable. For example, if

you execute the following code

a=True
if a:
 print("Hello, reader!")

you’ll see the output

Hello, reader!

Now, if you replace the line a=True with the following line a=False in

the previous code, you’ll not see any output.

�Q&A Session

Q3.3 Can you discuss some other use cases of the Boolean type?
I already showed you an example where you can use this type. As you

progress more, you’ll see that the Boolean variables are very useful, and

you can use them in many ways. To answer your question, let me give you

another example: assume that in a program, you keep incrementing the

value of a variable, and you’d like to know when the incremented value is

greater than 100. To implement the idea, you can set a flag variable that

will become True once the condition is fulfilled.

Chapter 3 siMple data TYpes

86

Q3.4 I have seen programs where True and False behave like 1 and 0.
For example, the following code

a=0
if a:
 print("Hello, reader!")
else:
 print("The condition became false!")

outputs “The condition became false!” Is this correct behavior?
Don’t forget that bool is a subtype of int. It is true that in some

code fragments, you may observe this behavior. However, the official

documentation (see Built-in Types – Python 3.13.3 documentation) warns

you about this by saying the following:

In many numeric contexts, False and True behave like the
integers 0 and 1, respectively. However, relying on this is dis-
couraged; explicitly convert using int() instead.

�Making Interactive Programs
Till now, you have seen code segments and programs that do not accept

user input. However, real-world applications are much more flexible and

capable of processing user inputs. This section will give you an idea of

writing that kind of program.

�Accepting User Inputs
Python has a built-in function called input. You can use this function to

pause the program execution and wait for the user’s input. Once the input

is provided, you can assign it to a variable that is convenient for you.

Chapter 3 siMple data TYpes

https://docs.python.org/3/library/stdtypes.html

87

�Demonstration 3.1

To examine this, let us write a simple program where the user can supply

his name and age. I store these inputs inside some variables. Then, I print

the information with some additional messages. Let us type the following

lines in your Python file and save the content. Then run the program:

Supply a name
user_name = input("Enter your name: ")
Enter the age
user_age = input("Enter your age: ")
Displaying the intended message
print(f"Welcome, {user_name}! You are now {user_age}")

�Output

Once you start running the program, you’ll see the following:

Enter your name:

Once you supply a name, the program asks for the age as follows:

Enter your name: John
Enter your age:

Let’s enter the age now. Here is a sample output after the user provides

the age:

Enter your name: John
Enter your age: 21
Welcome, John! You are now 21

Author's note: It’s a good practice to add a space at the end of your

prompts. You can see that I have added a space after the colons to make it

clear where to enter the text.

Chapter 3 siMple data TYpes

88

�Analysis

Once the user provides the required information, the input function

returns that input as a string. So, if you try to append the following lines in

the previous demonstration

Trying to increment the age by 1 as follows:
user_age=user_age + 1 # Error

you’ll see the following error:

user_age=user_age + 1 # Error
             ~~~~~~~~~^~~
TypeError: can only concatenate str (not "int") to str

To overcome this error, you can convert the string to an integer using 

the int() function. See the bold lines of code in the following line that can 

work for you:

# Trying to increment the age by 1 as follows:
# user_age=user_age + 1 # Error
user_age=int(user_age)
user_age=user_age + 1 # OK now

In the same way, you can use the float function to convert a string 

variable to a float variable. Here is a sample:

user_age=float(user_age)

Okay. I assume that you have got an idea of how to process user input 

in a program.

Chapter 3  siMple data TYpes



89

�Summary
This chapter discussed strings, integers, floating-point numbers, 

and Booleans. These are the most common primitive data types in 

programming. It also discussed how to make interactive programs that 

allow the users to provide inputs.

�Exercise 3
POINT TO NOTE

There are some exercises/assignments that ask for input from the user. While 

developing the solutions, you can assume that the users provide valid inputs 

only. once you learn input validations in Chapter 8, you can update these 

solutions.

E3.1 Can you print the following line?

The height of Andrew is 6'9"

E3.2 Given the following assignment, x,y=10,2.5, can you predict the 
output of the following Python statements:

print(x+y)
print(x/y)
print("The difference between x and y is:", x-y)
print("x*y=:"+ x*y)
print(x+ "is stored in x.")

E3.3 Write a program to calculate the area and perimeter of a circle. 
Your program should accept the radius from the user.

Chapter 3  siMple data TYpes



90

�Keys to Exercise 3
Here is a sample solution set for the exercises.

�E3.1

Any of the following lines of code can produce the intended output:

print("The height of Andrew is 6'9\"")
# Alternative solution
print('The height of Andrew is 6\'9"')

�E3.2

The first three lines are okay. However, the subsequent lines will cause 

problems. Let’s execute each line in a Python shell:

>>> x,y=10,2.5
>>> print(x+y)
12.5
>>> print(x/y)
4.0
>>> print("The difference between x and y is:", x-y)
The difference between x and y is: 7.5
>>> print("x*y=:"+ x*y)
Traceback (most recent call last):
  File "<python-input-18>", line 1, in <module>
    print("x*y=:"+ x*y)
          ~~~~~~~^~~~~
TypeError: can only concatenate str (not "float") to str
>>> print(x+ "is stored in x.")
Traceback (most recent call last):
 File "<python-input-19>", line 1, in <module>

Chapter 3 siMple data TYpes

91

 print(x+ "is stored in x.")
 ~^~~~~~~~~~~~~~~~~~~
TypeError: unsupported operand type(s) for +: 'int' and 'str'

�E3.3

Here is a sample program:

Get the radius from the user and convert it into a float
radius = float(input("Enter the radius of the circle: "))
Area of a circle=(22/7)*r*r where r is the radius
area = (22/7)*radius*radius
perimeter=2*(22/7)*radius
print(f"The area of the circle is: {area} square units.")
print(f"The perimeter of the circle is: {perimeter} units.")

Here is a sample output:

Enter the radius of the circle: 7.7
The area of the circle is: 186.34 square units.
The perimeter of the circle is: 48.4 units.

�Case Studies
From this time onward, you’ll see case studies (or projects). Before you

implement them, I want you to note the following points:

•	 You’ll see the complete code along with the supporting

comments at the end of the chapters. I also added

some useful information in these projects to help

you understand the important segments of code in a

better way.

Chapter 3 siMple data TYpes

92

•	 I already discussed these codes (or similar codes) in

the chapter or a previous chapter. So, if you do not

understand a line of code, read the chapter again. This

simple activity helps you to refresh your knowledge.

•	 I showed you the simple solutions at the beginning.

It is because your initial aim is to meet the essential

requirements. You can ignore the remaining corner

cases when you implement them for the first time.

•	 For example, in Python programming, you often

organize the code using functions. You call them to

perform the intended job and make your code more

Pythonic. In Chapter 7, you’ll learn about functions in

detail. Once you learn them, you can beautify the initial

implementations that I showed you in this book.

•	 You need to guard your application against unwanted

user inputs/scenarios. Chapter 8 shows you how to do

that. As a result, you can further improve the previous

implementations.

�CS3.1 Problem Statement
Welcome to your first project. I want you to develop a company catalog.

Assume that this company sells three different dry fruits – apricot, dates,

and almond. The seller can sell individual items or a combination of these

items. A gift pack is a special combination that contains all three items.

Here are some special considerations:

•	 If a customer purchases individual items, he does not

receive any discount.

•	 If a customer purchases a combo pack with two unique

items, he gets a 10% discount.

Chapter 3 siMple data TYpes

93

•	 If the customer purchases a gift pack, he gets a 25% discount.

The final output may look like the following (see Figure 3-4).

Figure 3-4.  The final output of the CS3.1

Can you implement this project?

�CS3.2 Problem Statement
Consider a restaurant manager who generates bills for his customers.

Assume that before generating a final bill, the manager needs to input the

service tax amount (in percentage) as well. Here is a sample:

Enter the bill amount before tax: $ 150
Enter the service tax percentage: 12
The amount to be paid: $168.0

Can you write a program that fulfills this criterion?

Chapter 3 siMple data TYpes

94

�Sample Implementations
Here are the sample implementations for the case studies.

�CS3.1 Implementation
Here, I use f-strings to print the seller’s name, address, etc. So you see the

following codes:

print(f"{seller_name}")
print(f"{seller_address}")

In this implementation, you do not need these f-strings. I could use

hard-coded strings like

seller_name = " ABC Retail"
seller_address = " 200, Xyz street,\n NJ-12345-6789"

But the problem is that when you need to update the seller

information, you need to reflect the change in every place. So I suggest that

you use variables in similar places for better maintenance. In that case,

once you can update the variable in one place, the effect will be reflected

in the remaining place. Now, go through the complete implementation:

Seller information
seller_name = " ABC Retail"
seller_address = " 200, Xyz street,\n NJ-12345-6789"
seller_contact = "987-654-321"

Decorating the top segment
print("-" * 50)
print(f"{seller_name}")
print(f"{seller_address}")
print("-" * 50)

Chapter 3 siMple data TYpes

95

apricot_pack = 30
dates_pack = 40
almonds_pack = 50
apricot_dates_combo = (apricot_pack + dates_pack) * .9
dates_almond_combo = (dates_pack + almonds_pack) * .9
almond_apricot_combo = (almonds_pack+ apricot_pack) * .9
gift_pack = (apricot_pack + dates_pack + almonds_pack) * .75
print("Product(s) \tPrice (per pack)")
print(f"Apricot\t\t{apricot_pack}")
print(f"Dates\t\t{dates_pack}")
print(f"Almond\t\t{almonds_pack}")
print(f"Combo-1\t\t{apricot_dates_combo}")
print(f"Combo-2\t\t{dates_almond_combo}")
print(f"Combo-3\t\t{almond_apricot_combo}")
print(f"GiftBox\t\t{gift_pack}")

Decorating the bottom segment.
It contains the contact information.
print("*" * 50)
print(f"For free delivery, contact {seller_contact} ")
print("*" * 50)

�CS3.2 Implementation
bi�ll_before_tax=float(input("Enter the bill amount before
tax:$ "))

service_tax=float(input("Enter the service tax percentage: "))
am�ount_to_be_paid = bill_before_tax + bill_before_tax *
service_tax/100

print(f"The amount to be paid: ${amount_to_be_paid}")

Chapter 3 siMple data TYpes

PART II

Building Smart
Programs
I found a very interesting quote in the book The Almanack of Naval

Ravikant:

The really smart thinkers are clear thinkers. They understand
the basics at a very, very fundamental level. I would rather
understand the basics really well than memorize all kinds of
complicated concepts I can’t stitch together and can’t rederive
from the basics. If you can’t rederive concepts from the basics
as you need them, you’re lost. You’re just memorizing.

I also believe the same. Part II is designed to help you learn about

loops, decision-making, file handling, functions, and modules with

exception-handling mechanisms. This part will also familiarize you

with advanced data types such as lists, tuples, and dictionaries. Upon

completion of this part, you’ll be confident about Python programming.

99© Vaskaran Sarcar 2025
V. Sarcar, Python Bootcamp, https://doi.org/10.1007/979-8-8688-1516-4_4

CHAPTER 4

Decision-Making
Decision-making is an integral part of programming. You often need to

examine certain conditions in a program. Based on those conditions, you

control the flow of the program execution. This chapter teaches how to

respond based on the state of your program.

�Understanding Conditional Structures
A real-world program often checks different values and executes code

based on those values. That is where conditional logic comes into play. We

often perform conditional tests using various if statements. For example,

you may see a simple if statement, an if-else chain, or an if-elif-else

chain in a program. The choice depends on how many conditions you

want to test at a specific point. To test various conditions, you’ll use the

comparison operators. This chapter uses those operators to verify these

conditions.

�Using an if Statement
Let us begin with a program that uses an if statement.

https://doi.org/10.1007/979-8-8688-1516-4_4#DOI

100

�Demonstration 4.1

The following program asks the user to supply a valid integer. If the user

provides a value that is less than 5, the program will print the supplied

value that is less than 5:

REMINDER

exception handling will be discussed in Chapter 8. for now, let us assume that

the users are providing valid inputs only.

user_input=int(input("Enter an integer: "))
Skipping the validation of the user's input
if user_input < 5:
 print(f"{user_input} is less than 5")

�Output

Here is a sample output:

Enter an integer: 3
3 is less than 5

�Analysis

There is a potential drawback in this program: if the user provides a value

that is 5 or more, it will NOT print that information.

�Using the if-else Statements
Let’s add a few more lines to the previous demonstration. This time, you’ll

see the use of an else statement.

ChapTer 4 decIsIon-MakIng

101

�Demonstration 4.2

Here is a sample program with the key changes in bold:

Skipping the validation of the user's input user_
input=int(input("Enter an integer: "))
if user_input < 5:
 print(f"{user_input} is less than 5")
else:
 print(f"{user_input} is greater than or equal to 5")

�Output

Let me show you two outputs from two valid inputs. These outputs cover

two possible branches of execution:

Sample output 1:

Enter an integer: 4
4 is less than 5

Sample output 2:

Enter an integer: 20
20 is greater than or equal to 5

�Analysis

Now you can get an output if the user provides a value that is greater than

or equal to 5 as well. However, notice that the output shows that 20 is

greater than or equal to 5. We all know that 20 is certainly greater than 5.

So, instead of saying “greater than or equal to,” you can segregate the

cases – “greater than” and “equal to.” Let’s try to implement the idea.

ChapTer 4 decIsIon-MakIng

102

�Using the if-elif-else Statements
Whenever a program needs to check three or more conditions, you can use

an if-elif-else chain. The following program demonstrates a usage.

�Demonstration 4.3

In this program, the elif part uses the double equal to (==) operator,

which is nothing but the comparison operator to test the equality of both

sides. It returns True if the values of both sides of the operator match;

otherwise, it returns False.

POINT TO NOTE

We use a single equal to (=) sign to assign a value to a variable. for example,

you can read the code a=5 as “Set the value 5 to the variable
a.” You have seen this kind of usage several times. However, we use double

equal to (==) for the equality operator. It returns True if the values of both

sides of the operator match; otherwise, it returns False. So, while running

the following program, if the user enters 5, the program can detect that it is

neither greater nor less than 5.

The != operator does exactly the opposite of ==. (The exclamation

sign is for “not”; so you pronounce "!=" as "not equal to.") You may

also see similar syntaxes in many other programming languages such as

Java and C#.

Let us execute the following code:

Skipping the validation of the user's input
user_input=int(input("Enter an integer: "))
if user_input < 5:
 print(f"{user_input} is less than 5")

ChapTer 4 decIsIon-MakIng

103

elif user_input == 5:
 print(f"The user-provided value is equal to 5")
else:
 print(f"{user_input} is greater than 5")

�Output

Here are some sample outputs:

Case 1: The user supplies 12.

Enter an integer: 12
12 is greater than 5

Case 2: The user supplies 4.

Enter an integer: 4
4 is less than 5

Case 3: The user supplies 5.

Enter an integer: 5
The user-provided value is equal to 5

�Q&A Session

Q4.1 How can you handle a scenario that considers more than
three cases?
You can add more elif statements. For example, consider the following

program (Demonstration 4.4) that first checks whether a user input is less

than 5, equal to 5, or less than 7. Otherwise, it can detect that the input is

greater than or equal to 7.

ChapTer 4 decIsIon-MakIng

104

�Demonstration 4.4

Here is a sample program that uses multiple elif statements:

Skipping the validation of the user's input
user_input=int(input("Enter an integer: "))
if user_input < 5:
 print(f"{user_input} is less than 5")
elif user_input == 5:
 print(f"The user-provided value is equal to 5")
elif user_input <7:
 print(f"{user_input} more than 5 but less than 7")
else:
 print(f"{user_input} is greater than or equal to 7")

�Output

Here are some sample outputs:

Case 1: The user supplies 3.

Enter an integer: 3
3 is less than 5

Case 2: The user supplies 5.

Enter an integer: 5
The user-provided value is equal to 5

Case 3: The user supplies 6.

Enter an integer: 6
6 more than 5 but less than 7

Case 4: The user supplies 15.

Enter an integer: 15
15 is greater than or equal to 7

ChapTer 4 decIsIon-MakIng

105

POINTS TO REMEMBER

Python executes only one block from an if-else or if-elif-else chain.

The control flows in the sequential order until one condition becomes True.

You may see many indented lines of code under any of these blocks (if,
elif, or else). When a condition becomes True, all the indented lines inside

the block will execute.

You can also note that the else block is not mandatory. In demonstration

4.1, you have seen that you can write a program with an if block only. In that

program, the else block was not present.

So far, I used only one statement inside an if block, elif block, or else block.

However, if needed, you can place multiple statements in any of these blocks.

�Q&A Session

Q4.2 It appears to me that to avoid the use of an if-elif-else chain, I can
always use an if-else chain. Is this correct?
You can solve a mathematical problem in various ways. The same is true

for programming as well. If the program logic is correct, you’ll see the

expected output. However, to evaluate multiple conditions, I prefer the

if-elif-else chain over the if-else chain. Why? Let’s analyze the

following program.

�Demonstration 4.5

Here is an alternative implementation of the previous demonstration

(Demonstration 4.4) that uses only the if-else chains as follows:

Skipping the validation of the user's input
user_input=int(input("Enter an integer: "))
if user_input < 5:

ChapTer 4 decIsIon-MakIng

106

 print(f"{user_input} is less than 5")
else:
 if user_input == 5:
 print(f"The user provided value is equal to 5")
 else:
 if user_input < 7:
 print(f"{user_input} more than 5 but less than 7")
 else:
 print(f"{user_input} is greater than or equal to 7")

�Output

You can test this program against the same inputs that I used in

Demonstration 4.4. Since you’ll receive the same output, I do not show

them again.

�Analysis

Now compare Demonstration 4.4 with Demonstration 4.5. Notice that

in Demonstration 4.5, as the number of conditions grows, the texts are

drifting to the right side. And this pattern will continue if you need to

evaluate more conditions. This is why rather than using the if-else chains,

I’d prefer to use the if-elif-else chain in a similar context. For me, it is a

better option and more manageable.

Note T he previous code segment shows you can write nested if (or
else) statements too.

ChapTer 4 decIsIon-MakIng

107

�Alternative Designs
Demonstration 4.5 was an alternative implementation of Demonstration 4.4.

Still, you may see many other designs in a similar context, and Python does

not complain if you follow them. Let’s see such an example.

�Demonstration 4.6

The following program shows another way of using an if statement to

check a condition. Normally, I prefer the approach that you saw in the first

four demonstrations. However, I am showing you this for one reason: you

should not be surprised if you see a similar construct in other people’s

code. At the same time, I also acknowledge that in some cases, it helps you

write more concise code compared with the other approach. We refer to

this as inline-if. You can summarize the concept as follows:

Do task-1 if the condition is True else do task-2

To demonstrate, let me rewrite Demonstration 4.2. Before you see this,

I want you to note the following points:

•	 I kept the old code in the comments for your immediate

reference.

•	 I created three new variables, named msg1, msg2, and

result. This new approach is demonstrated when I

assign the result variable.

•	 The variables msg1 and msg2 help me avoid writing a

long line of code while assigning the result variable.

ChapTer 4 decIsIon-MakIng

108

POINT TO NOTE

The official link (see https://peps.python.org/pep-0008/#maximum-
line-length) suggests limiting all lines to a maximum of 79 characters.

However, this link also informs

•	 Some teams strongly prefer a longer line length. for code

maintained exclusively or primarily by a team that can reach

agreement on this issue, it is okay to increase the line length

limit up to 99 characters, provided that comments and

docstrings are still wrapped at 72 characters.

•	 The Python standard library is conservative and requires

limiting lines to 79 characters (and docstrings/comments to 72).

Skipping the validation of the user's input
user_input=int(input("Enter an integer: "))
if user_input < 5:
print(f"{user_input} is less than 5")
else:
print(f"{user_input} is greater than or equal to 5")

msg1 = f"{user_input} is less than 5"
msg2 = f"{user_input} is greater than or equal to 5"
result= msg1 if user_input< 5 else msg2
print(result)

�Output

You can test this program against the same inputs that I used in

Demonstration 4.2. Since you’ll receive the same output, I do not show

them again.

ChapTer 4 decIsIon-MakIng

https://peps.python.org/pep-0008/#maximum-line-length
https://peps.python.org/pep-0008/#maximum-line-length

109

�Pattern Matching Using the match Statement
Python 3.10 introduced match statements. The online link https://docs.
python.org/3/tutorial/controlflow.html#match-statements states the

following:

A match statement takes an expression and compares its value
to successive patterns given as one or more case blocks. This is
superficially similar to a switch statement in C, Java or
JavaScript (and many other languages), but it’s more similar
to pattern matching in languages like Rust or Haskell. Only
the first pattern that matches gets executed and it can also
extract components (sequence elements or object attributes)
from the value into variables.

�Demonstration 4.7

The official statements are self-explanatory. Let’s confirm this with the

following program that can classify only three different types of errors:

user_input=input("Enter an HTTP error code (400,404 or 408): ")
Converting it to an int(Skipping the validation of the
user's input)
value=int(user_input)
msg="n/a"
match value:
 case 400:
 msg=msg.replace("n/a","bad request")
 case 404:
 msg= msg.replace("n/a","not found")
 case 408:
 msg= msg.replace("n/a","request timeout")
 case _:
 msg= msg.replace("n/a","unknown")
print(f"The code {value} represents the '{msg}' error.")

ChapTer 4 decIsIon-MakIng

https://docs.python.org/3/tutorial/controlflow.html#match-statements
https://docs.python.org/3/tutorial/controlflow.html#match-statements

110

�Output

Here are some sample outputs:

Case 1: The user enters 404.

Enter an HTTP error code (400,404 or 408): 404
The code 404 represents the 'not found' error.

Case 2: The user enters 401.

Enter an HTTP error code (400,404 or 408): 401
The code 401 represents the 'unknown' error.

�Q&A Session

Q4.3 What will happen if an exact match is not found?
The previous output confirms that in that case, the last case, a wildcard_,

if provided, will be used as the matching case. The online link https://
docs.python.org/3/whatsnew/3.10.html also confirms that if an exact

match is not confirmed and a wildcard case does not exist, the entire

match block is a no-op.

Q4.4 Does this mean that while pattern matching, the wildcard case is
mandatory?
No. However, I’d like to include this in my program because it never fails to

match. You can understand that if no case matches, none of the branches

will be executed. For example, if the wildcard_ case is absent in this

program and the user provides the input 401, you’ll notice the initial value

of the msg variable in the final output that is as follows:

Enter an HTTP error code (400,404 or 408): 401
The code 401 represents the 'n/a' error.

ChapTer 4 decIsIon-MakIng

https://docs.python.org/3/whatsnew/3.10.html
https://docs.python.org/3/whatsnew/3.10.html

111

Q4.5 Can I match multiple possible values?
Yes. Let me show you a sample program in which I highlight the important

portion in bold:

user_input=input("Enter the HTTP error code (such as 4xx): ")
Converting it to an int(Skipping the validation of the
user's input)
value=int(user_input)

match value:
 case 400:
 msg="Bad request"
 case 404|408:
 msg= "Not found or request timeout"
 case _:
 �msg= "Error excluding bad request, not found or request

timeout"
print(f"The error code {value} is for: {msg}")

Here is a possible output from this program:

Enter the HTTP error code (such as 4xx): 404
The error code 404 is for: Not found or request timeout

�Tautology and Contradictions
You should be careful about your logic. Sometimes the result of the

compound expressions is always False. For example, if you write

if a < 5 and a > 7: # This condition cannot be satisfied.
 print("The if condition is satisfied.")

ChapTer 4 decIsIon-MakIng

112

think now. Is it possible that a variable is less than 5 but greater than 7

at the same time? The answer is no. We term these as contradictions. We

term the opposite scenario as a tautology, where the resultant value of

the compound expressions is always True.

�Summary
This chapter discussed the conditional structures in Python programming.

Upon completion of this chapter, you can answer the following questions:

•	 How can you use an if statement?

•	 How can you use an if-else chain?

•	 How can you use an if-elif-else chain?

•	 How can you use inline if statements?

•	 How can you use the match statements?

•	 What do you mean by tautology (and contradiction)?

�Exercise 4
E4.1 Do you find any issue with the following code (assume that the
user provides the valid inputs only)?

Skipping the validation of the user's input
user_input=float(input("Enter a number: "))
if user_input > 10:
 �result= "The number is greater than 10."
print(result)

ChapTer 4 decIsIon-MakIng

113

E4.2 Predict the output:

user_input=float(input("Enter a number: "))
if 7 > user_input > 9:
 print("The condition is satisfied.")
else:
 print("The condition will never be satisfied.")

E4.3 Predict the output:

number = 0
if number:
 �print(f"The condition is satisfied with {number}")
else:
 �print(f"The condition is not satisfied with {number}")

E4.4 Give an example of a tautology.
E4.5 Can you predict the output of the following program?

value = 408
match value:

 case 408:
 msg= "Request timeout"
 case _:
 msg= "Error excluding request timeout or bad request"
 case 400:
 msg = "Bad request"
print(f"The error code {value} represents {msg}")

ChapTer 4 decIsIon-MakIng

114

�Keys to Exercise 4
�E4.1

If you supply a number that is greater than 10, you’ll see the output. Here is

a sample:

Enter a number: 11.5
The number is greater than 10.

Otherwise, you’ll encounter an error. Here is a sample:

Enter a number: 5
Traceback (most recent call last):
 File "E:\MyPrograms\PythonBootcamp\chapter4\chapter4_
exercises.py", line 6, in <module>
 print(result)
 ^^^^^^
NameError: name 'result' is not defined

It is because the result variable could not be initialized because the

if condition was not satisfied. So you need to figure out a way when the if

condition is not satisfied. How can you do that? Obviously, you can use

an else block and initialize the result variable. I assume that you can do

this. So let me show you another easy way where I can initialize the result

variable before the if statement as follows (shown in bold):

Skipping the validation of the user's input
user_input=float(input("Enter a number: "))
result = "The number is not more than 10"
if user_input > 10:
 �result= "The number is greater than 10."
print(result)

ChapTer 4 decIsIon-MakIng

115

This modified program can handle an input that is less than
or equal to 10. Here is a sample:

Enter a number: 5.5
The number is not more than 10

�E4.2

For any input, you’ll see the following:

The condition will never be satisfied.

Explanation:
This is because the result of the compound expressions is always False in

this case. It is an example of a contradiction.

�E4.3

You should see the following output:

The condition is not satisfied with 0

Explanation:
In Python 3.x programming, when you convert int to bool, except 0,

Python evaluates all to True. For example, if you try a non-zero number

such as -2.5, you’ll see the following:

The condition is satisfied with -2.5

�E4.4

Let us say that the flag is a number variable. Now consider the following

expression: flag>0 or flag<=0, which is always true. So it is an example of

tautology.

ChapTer 4 decIsIon-MakIng

116

�E4.5

You’ll see the following syntax error. Here is a sample:

File "E:\MyPrograms\PythonBootcamp\chapter04\ch04_e04.py",
line 7
 case _:
 ^
SyntaxError: wildcard makes remaining patterns unreachable

�Case Study
It’s time to analyze the following case studies.

�CS4.1 Problem Statement
Let us assume you are about to launch a product that asks for different

donation amounts for various age groups are as follows:

•	 Kids up to age 10 can use the product for free.

•	 If the user is above 10 years but less than 20 years, he

needs to pay 1$.

•	 If the user is between the age of 20 years and less than

30 years, he needs to pay 2$.

•	 If the user is between the age of 30 years and less than

40 years, he needs to pay 3$.

•	 Users from 40 and above need to pay 4$.

So you can write a program that will ask the age of a user. Based on this

user’s input, the program should display the expected donation amount

from the user. Can you implement the idea?

ChapTer 4 decIsIon-MakIng

117

�CS4.2 Problem Statement
Would you like to take a test? The test is simple. You need to predict the

value of an expression by seeing it. You can take this test as many times

as you want, but there is a twist. The computer can show you a unique

expression each time you play the game. Are you ready?

For a better understanding, let me show you some sample output:

Case 1: Wrong prediction

Predict the value of the following expression: 12*8%3
Enter your answer:5
Your answer is wrong.
The correct answer is:0

Case 2: Correct prediction

Predict the value of the following expression: 12+(2*3)/4
Enter your answer:13.5
Correct answer.

Author’s comment:
To implement the idea, you can consider only one expression and change

the data inside it. But I want you to make an improved solution. A better

application can test you with different expressions using varying data. So I

placed this project in this chapter, but not in Chapter 3.

�Sample Implementations
Here are the sample implementations for the case studies.

ChapTer 4 decIsIon-MakIng

118

�CS4.1 Implementation
You can handle this scenario using an if-elif-else chain (or match

statements). Here is a sample program for you. For the sake of simplicity, I

skipped the validation of user inputs:

user_input = input("Enter your age: ")
Skipping the validation of the user's input
age = float(user_input)
if age < 10:
 print("Hi Dear. You can use the product for free.")
elif 10 <= age < 20:
 print("Please donate $1 for the product.")
elif 20 <= age < 30:
 print("Please donate $2 for the product.")
elif 30 <= age < 40:
 print("Please donate $3 for the product.")
else:
 print("Please donate $4 for the product.")

Let me show you some sample outputs.

Case 1:

Enter your age: 9.2
Hi Dear. You can use the product for free.

Case 2:

Enter your age: 12.5
Please donate $1 for the product.

Case 3:

Enter your age: 25
Please donate $2 for the product.

ChapTer 4 decIsIon-MakIng

119

Case 4:

Enter your age: 37
Please donate $3 for the product.

Case 5:

Enter your age: 57.3
Please donate $4 for the product.

�CS4.2 Implementation
I started with three unique expressions in this project. When you run

this application, you get a unique expression in each run. For example,

in the sample output you can see that in one run, you get an expression

12*8%3. But in a different run, you get a new expression: 12+(2*3)/4. To

give it more dynamic behavior, I change the data in a particular type
of expression too. For example, in one run, you may see the expression

12*8%3, but in a different run, you may see 11*8%3. It is because I replace

some data in these initial expressions with random data in each run. To

do this, I import the randint() function. The randint(a,b) can return a

random integer in the range [a, b] including both endpoints.

The following code segment with supporting comments can explain it:

x = randint(10, 12)
question1 = "2*3-4"
Replacing 2 in question1 with x
question1 = question1.replace("2", str(x))
question2 = "1+(2*3)/4"
Replacing 1 in question2 with x
question2 = question2.replace("1", str(x))
question3 = "5*8%3"
Replacing 5 in question3 with x
question3 = question3.replace("5", str(x))

ChapTer 4 decIsIon-MakIng

120

I use another important function eval() in this implementation. This

function has three parameters; the first one is mandatory and the last two

are optional. I do not need these optional parameters now. We can pass a

string to eval() that can evaluate it as a Python expression. To show how it

works, I present you the following code segment:

>>> eval("1+2+3")
6
>>> eval("2*5+2")
12

You should not find any difficulties in understanding the complete

implementation now. Here is the complete code:

from random import randint

x = randint(10, 12)
#First question with initial data
question1 = "2*3-4"
Replacing 2 in question1 with x
question1 = question1.replace("2", str(x))

#Second question with initial data
question2 = "1+(2*3)/4"
Replacing 1 in question2 with x
question2 = question2.replace("1", str(x))

#Third question with initial data
question3 = "5*8%3"
Replacing 5 in question3 with x
question3 = question3.replace("5", str(x))

The randint(1,3) function returns a number
between 1 and 3 (both included)
pick_question = randint(1,3)

ChapTer 4 decIsIon-MakIng

121

if pick_question == 1:
 quiz = question1
elif pick_question == 2:
 quiz = question2
else:
 quiz = question3

print(f"Predict the value of the following expression:{quiz}")
User's input
user_input = input("Enter your answer:")
Converting it to float
predicted_value = float(user_input)
actual_value = eval(quiz)
if predicted_value == actual_value:
 print("Correct answer.")
else:
 print("Your answer is wrong.")
 print(f"The correct answer is:{actual_value}")

ChapTer 4 decIsIon-MakIng

123© Vaskaran Sarcar 2025
V. Sarcar, Python Bootcamp, https://doi.org/10.1007/979-8-8688-1516-4_5

CHAPTER 5

Loops
The popular programming languages allow you to execute a code segment

repeatedly via a construct called a loop. This chapter discusses different

loop statements in Python. Once you finish this chapter, you’ll understand

that these are essential parts of programming.

�The Purpose of Iteration
Developers often use the term iteration to denote repetition. The first question

that may come into your mind is: why do I need loop statements (or iterations)?

To understand the answer, let’s look at the following code snippet:

print("Printing 1 to 5:")
print(1)
print(2)
print(3)
print(4)
print(5)

https://doi.org/10.1007/979-8-8688-1516-4_5#DOI

124

There is no surprise that upon executing this code, you’ll see the

following output:

Printing 1 to 5:
1
2
3
4
5

It is a simple program, and the output is obvious. Now, I give you a

task: I want you to write a program that can print up to 5000 or 50000

in the same way. If you follow the previous approach, how many print

statements are required? Can you imagine this? Even if you use a simple

copy/paste technique, there is a substantial amount of work. This is

why it is an impractical and tedious approach. Is there any alternative?

You guessed it right! Loop statements are ready to help you in similar

situations.

POINTS TO NOTE

When you write a program or implement an algorithm, you may need to iterate

over a certain part of the code until a specific condition meets. You can use the

loop statements along with the conditional statements to make concise and

smarter programs.

however, while implementing a loop, you need to be careful. It is because an

incorrect logic can cause an infinite loop that you must avoid.

There are different loop statements. You can use them at your

convenience. For now, let’s start with while loops.

ChapTer 5 loops

125

�The while Loop
The while loop continues executing as long as a certain condition is true. It

has the following form:

while "Your specified condition(s)":
 statement-1
 statement-2

�Notable Characteristics
Here are the notable characteristics of the while loop:

•	 It starts with a reserved keyword while.

•	 There is a colon (:) after the condition(s) you

mentioned.

•	 There can be many statements inside the while loop.

You indent these lines. (Notice that these lines have

the same number of spaces from the left.) This correct

indentation is important. It is because indentations tell

you which statements are inside the while loop and

which are not.

•	 You check the condition before you enter this block

of statements. If the condition is true, the control can

enter the block and execute these statements. You

repeat this block of statements as long as the condition

is true.

ChapTer 5 loops

126

•	 To come out from a while loop, the condition needs to

be false. Otherwise, the block of statements inside the

loop will continue executing. If the condition is false

initially, you cannot enter the loop at all.

•	 If you enter a loop but do not satisfy the exit criteria,

you fall into the trap of an infinite loop.

�Demonstration 5.1

In the following example, I used a variable called current_number.

Initially, I set its value to 1. Then I introduced the while loop that keeps

printing the number if the current_number is less than or equal to 5. The

following flowchart can depict the scenario (see Figure 5-1).

Figure 5-1.  Flowchart of a while loop

ChapTer 5 loops

127

You can see that once you enter the loop, the program prints the

current value of this variable, increments the value of the variable by 1, and

repeats this process. Let us see the sample demonstration that is as follows:

print("Printing 1 to 5 using a while loop:")
current_value = 1
while current_value <= 5:
 print(current_value)
 # incrementing the value
 current_value += 1
The following statement is placed outside the while loop
print("Completed. The control exits from the loop.")

Author's note: The statement current_value += 1 is a shortcut for the

statement current_value = current_value + 1.

�Output

When you run this program, you’ll see the following output:

Printing 1 to 5 using a while loop:
1
2
3
4
5
Completed. The control exits from the loop.

You may note that I chose the number 5 arbitrarily. However, you can

choose any number you want. For example, if you want a print till 500 or

5000, you can replace 5 with the intended number in this program.

ChapTer 5 loops

128

�Q&A Session

Q5.1 You said that while implementing a loop, I need to be careful
because incorrect logic can cause an infinite loop. Can you give an
example?
If you comment out the line current_value += 1 in the previous program,

you’ll fall into an infinite loop. Here is a sample output:

Printing 1 to 5 using a while loop:
1
1
...

You can see that the control inside the while loop cannot come out

now. So you need to apply the logic accordingly.

Author's note: In PyCharm, to interrupt this infinite loop, you can click the

stop button as shown in the following figure (see Figure 5-2).

Figure 5-2.  Click the stop button to interrupt the execution of the
infinite loop

ChapTer 5 loops

129

�The for Loop
There is another loop called the for loop. Before I discuss it, I suggest you

investigate the construction and usage of the while loop again. Notice that

there were three major parts as follows:

•	 Initialization: You use it before the control enters

the while loop. For example, the previous program

initialized the current_value to 1 before entering the

while loop.

•	 Condition: This is important because it decides

whether the control should enter the loop, keep

executing the loop, or exit the loop. Notice that in

Demonstration 5.1, current_value <= 5 was the

condition for the while loop.

•	 Update: You must implement the proper logic to

update your intended variable (which you use in the

condition of the while loop). This helps you to come

out of the loop and process the next statement, if any.

This is why the statement current_value += 1 was

placed inside the while loop. If the control cannot exit

from the loop, you fall into an infinite loop. You have

seen an example of an infinite loop in Q&A 5.1.

The for loop provides a convenient way to express the steps of a while

loop. In support of this statement, let me show you the following code

snippet:

for current_value in range(1,6,1):
 print(current_value)

ChapTer 5 loops

130

Upon executing this code snippet, you’ll see the following output:

1
2
3
4
5

In the previous code snippet, I used the range function that generates

a sequence of numbers. The general form of this function is range(start,
stop, step) where

•	 You use the start parameter for the first value. The

default value is 0.

•	 You use the stop parameter for the one past the

last value.

•	 You use the step parameter to denote the increment or

decrement value.

�Is range a Function or a Type?
The online link Built-in Functions – Python 3.13.2 documentation lists

the built-in functions, and you’ll find the presence of range in that list.

However, once you dig further, you’ll see that the official documentation

(see Built-in Functions – Python 3.13.2 documentation) further says the

following:

Rather than being a function, range is actually an immutable
sequence type…

From this link, you can also see the following two forms:

class range(stop)
class range(start, stop, step=1)

ChapTer 5 loops

https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html#func-range
https://docs.python.org/3/library/stdtypes.html#range

131

It indicates that while using it, you need to pass at least one argument.

However, you can pass a maximum of three arguments. To illustrate, if you

use the following code

for current_value in range(6):
 print(current_value)

you’ll see that numbers from 0 to 5 (6 – 1) are printed. It is because,

by default, the sequence starts at 0, increments by 1, and stops before the

specified number.

Since the step parameter is optional for you, Python will not complain

if you pass only two arguments. For example, in the previous code

segment, if you replace range(6) with range(1,6), you’ll see that the

numbers from 1 to 5 are printed again.

You can use the step parameter wisely. For example, if you run the

following code

Printing 0,3,6,9 using for loop
for i in range(0, 11, 3):
 print(i)

you’ll see the following output:

0
3
6
9

You can see that the program prints the values as follows: 0, 0+3=3,

3+3=6, 6+3=9. The next value, 9+3=12, is beyond the limit/range

(11-1=10). So you do not see 12 in this output.

ChapTer 5 loops

132

You can use the for loop to print these values from the reverse

direction. Here is the code segment for your reference:

Printing 0,3,6,9 using for loop
for current_value in range(9, -1, -3):
 print(current_value)

Notice that this code segment prints the values in the following order:

9
6 (since 9-3=6)
3 (since 6-3=3)
0 (since 3-3=0)

The next value 0-3=-3 is beyond the limit/range. So you do not see -3

in this output.

PYTHON VERSUS C# (AND JAVA)

Many other programming languages such as C# and Java use a different

structure to describe the traditional/ general-purpose "for" loop. let's see the

equivalent code in some of those languages.

In Java, you can use the following code to print the numbers 1–5 (in Java's

code convention, the opening brace should be at the end of the line):

for (int i=0; i<6; i++) {
 System.out.println(i);
}

You can get an equivalent output if you exercise the following code in C#

as well:

for (int i=0; i<6; i++)
{
 Console.WriteLine(i);
}

ChapTer 5 loops

133

You can see that these programming languages use the concept of an index

variable that counts the number of iterations. In Python programming, the for

loop structure is different from them. however, it is also true that Python's for
loop is similar to C#'s foreach loop. for example, the following code snippet in

C# can print the numbers 1 through 5 as well:

int[] numbers={1,2,3,4,5};
foreach(int i in numbers)
{
 Console.WriteLine(i);
}

�Demonstration 5.2

I hope you have got the idea of using the range function in a for loop. Let

us make an equivalent program of Demonstration 5.1 that is as follows:

print("Printing 1 to 5 using a 'for' loop:")
The range(1,6) function prints values from 1 to 6-1=5
for current_value in range(1, 6):
 print(current_value)
The following statement is placed outside the for loop
print("Completed. The control exits from the loop.")

�Output

If you run this program, you get the following output:

Printing 1 to 5 using a 'for' loop:
1
2
3

ChapTer 5 loops

134

4
5
Completed. The control exits from the loop.

This demonstration has given an overview of the for loop. Let us

examine one more use case using this loop.

�Introducing Lists
In the next chapter, you’ll see some advanced data types, including lists,

tuples, and dictionaries. To understand the upcoming example, it will be

enough for you to know that a list can store a sequence of elements that

can be of the same data type or different data types. You can define a list

something like

list_name=[value1,value2,value3,..]

You often use the for loop when you traverse an iterable element like

a list, tuple, string, etc. What is an iterable element? In simple terms, an

iterable element is an element that can be looped over. The general syntax

to traverse and print the content of an iterable element is as follows:

for element in iterable_element:
 print(element)

�Demonstration 5.3

Assume you have a list of employee names as follows:

employee_names = ["Sam", "Bob", "George", "Kate", "Julie"]

ChapTer 5 loops

135

Can you print these names using a for loop? Yes, you can. See the

following code:

employee_names = ["Sam", "Bob", "George", "Kate", "Julie"]
for employee in employee_names:
 print(employee)

�Output

Upon executing this program, you can see the following output:

Sam
Bob
George
Kate
Julie

�Analysis

Let us understand: how did the loop work in this demonstration? The first

time you passed through the for loop, the first element of the list, "Sam",

was assigned to the variable employee. Next time, the second element in

the list, "Bob", was assigned to the variable employee. And it continued like

this until you reached the end of the list.

�Q&A Session

Q5.2 It appears to me that you could print the list elements without
using a for loop. Is this a correct understanding?
Yes. However, consider a scenario where your list contains many names or

when the list changes very often. In these cases, to access the list elements,

the for loop can provide the best potential support to you.

ChapTer 5 loops

136

Q5.3 It will be helpful if you summarize the difference between a for
loop and a while loop.
Apart from the structure and individual developers’ preferences, you can

summarize the difference as follows: A while loop runs as long as the

specified condition is true. In contrast, a for loop is suitable for a collection

of items where you want to execute a block of code for each item in the

collection.

Q5.4 How does a list differ from a string?
Both are indeed sequences. However, a string contains a sequence of

characters, whereas a list element can be of any type.

�Use of the break Statement
Sometimes, you may need to exit from a loop based on a certain

condition(s). The break statement can help you in those contexts. To

illustrate, if you execute the following code snippet

for number in range(1,6):
 print(number)

you will see that the numbers from 1 to 5 are printed. Let us assume

that you do not want to go to the end of the loop. Instead, you have decided

that you’ll exit from this loop when the number becomes 3. In this case,

you need to incorporate some changes in the loop. Let us understand the

changes in the following demonstration.

�Demonstration 5.4

Since you want to come out from the loop based on a condition, you can

insert an if block that contains a break statement (break is a keyword in

Python) as follows (notice the bold segment):

ChapTer 5 loops

137

for num in range(1,6):
 if(num==3):
 print("Exiting the loop.")
 break
 print(num)

Author's note: While using the if statement, I used parentheses for better

readability. However, it was not required in this example.

�Output

Execute the code now. You’ll see the following output:

1
2
Exiting the loop.

You can see that a break statement allows the loop to terminate

prematurely.

�Q&A Session

5.5 It appears to me that you could simplify the program. For example,
if I know that I'll exit at 3, why should I write a program that can
continue till 5?
This simple demonstration was made to show you how to come out of

a loop. You can use this concept as per your need. In addition, it is not

always possible to know in advance when you should break a loop. For

example, consider a case when you generate some random numbers

inside a loop, and you design the application in such a way that for a

particular random number inside a loop, you do not process further. In a

case like this, the break statement can help you come out of the loop.

ChapTer 5 loops

138

�Use of the continue Statement
You have seen the use of a break statement. There is another interesting

keyword in Python called continue. Using this keyword, you can skip some

statements inside a loop in an iteration. You place those statements after

the keyword continue.

There is a reason for this. When a specific condition is met, you may

not want to exit entirely from a loop. Instead, in this iteration, you may

want to skip the remaining statements of the loop and go back to the

beginning of the loop. The continue keyword is made for this purpose.

To help you understand the usage, I use a similar example that you saw

in Demonstration 5.4. The only difference is that this time, I use continue

instead of break. I also make some meaningful changes before I print the

message. Let us follow the next demonstration.

�Demonstration 5.5

Here is a program that uses the continue statement:

for num in range(1,6):
 if(num==3):
 print("Skipping the remaining part of the iteration.")
 continue
 print(num)

�Output

When you run this program, you’ll see the following output:

1
2
Skipping the remaining part of the iteration.
4
5

ChapTer 5 loops

139

�Analysis

Notice that I placed the last print statement after the continue statement.

When the program sees the continue statement, it skips the remaining

part of the loop for that particular iteration. This is why you do not see the

number 3 in this output. The output also reflects that the loop continued

even after the num variable became 3. This is why you can see the numbers

4 and 5 in the output. However, in case of a break, the control jumped

out from the loop, and this is the reason the numbers 4 and 5 were absent

when you used the break statement in the previous demonstration

(Demonstration 5.4).

POINTS TO NOTE

The concepts of the while loop, break, and continue statements are very

similar when you practice programming C, C++, Java, or C#.

�Using Built-In Functionalities
Chapter 3 showed you how to use the built-in functions. This chapter

also gave you a quick introduction to lists. These two concepts will help

you use some more helpful functions that are often used with conditional

statements and loops.

�The iter and next Functions
I have used the word iterable previously. If you investigate further, you’ll

know that an iterable object has a function called iter(). You can use it to

get an iterator. For example, given the following list, employees = ["Sam",

ChapTer 5 loops

140

"Bob", "George"], you can print the values inside the list using the iter()

and next() methods. To illustrate, let us examine a few code snippets.

First, execute the following snippet:

employees = ["Sam", "Bob", "George"]
iterator=iter(employees)
next(iterator)

You will see the output 'Sam'. If you execute the next(iterator)

again, you will see the output 'Bob'. If you execute the next(iterator)

one more time, you will see the output 'George'.

�Q&A Session

Q5.6 What will happen if you execute the same code next(iterator) one
more time?
It’s an easy guess. You know that you have reached the end. So you’ll see

the error. Let me show you the same by executing the code repeatedly in a

terminal:

>>> employees = ["Sam", "Bob", "George"]
>>> iterator=iter(employees)
>>> next(iterator)
'Sam'
>>> next(iterator)
'Bob'
>>> next(iterator)
'George'
>>> next(iterator)
Traceback (most recent call last):
 File "<python-input-5>", line 1, in <module>
 next(iterator)
    ~~~~^^^^^^^^^^
StopIteration

ChapTer 5  loops



141

�The enumerate Function
You have seen that in general, Python’s for loop does not use an index 

variable. In other words, loop counters are absent in the for loops in 

Python. However, if you need such a counter, you can get it.

�Demonstration 5.6

To illustrate, look into the following code snippet in which using 

the enumerate function, I print the index value along with the 

employee’s name:

employees = ["Sam", "Bob", "George"]
for index,emp in enumerate(employees):
    print(index, emp)

Once you execute this code, you’ll see the following output:

0 Sam
1 Bob
2 George

You can see that the enumerate function iterates over the collection 

and it returns the value of the item along with the index of the item.

�Nested Loop
In the previous chapter (Chapter 4), you have seen that a program can 

contain an if statement inside another if statement. We call it a nested 

if statement. Similarly, you can have nested loops, which means you can 

have a loop that is contained in another loop. It is useful when you want to 

repeat an iterative process.

ChapTer 5  loops



142

To demonstrate, let me show you the following program that uses two 

for loops. For each iteration of the “outer” for loop, the “inner” for loop 

executes completely.

�Demonstration 5.7

Here is a sample program for you:

print("*** Nested loop example.***")
colors = ["Red","Green","Yellow"]
fruits = ["Mango","Banana"]
for color in colors:
    for fruit in fruits:
        print(color, fruit)

�Output

Here is the output:

*** Nested loop example.***
Red Mango
Red Banana
Green Mango
Green Banana
Yellow Mango
Yellow Banana

�Analysis

By default, the print function ends with a new line (in other words, it has 

the default parameter “\n”). However, you can pass any other character. 

To illustrate, to organize the output differently, replace the previous loop 

statements with the following block of code (the key change is shown 

in bold):

ChapTer 5  loops



143

// There is no change in the previous code
for color in colors:
    for fruit in fruits:
        print(color, fruit, end="  ")
    print()

If you execute this modified program, you’ll see the following output:

*** Nested loop example.***
Red Mango  Red Banana
Green Mango  Green Banana
Yellow Mango  Yellow Banana

�Summary
Loops are very common in computer programming. This chapter 

discussed different loops along with their usage in Python programming. 

Upon completion of this chapter, you can answer the following questions:

•	 What is a loop and why is it essential in programming?

•	 How can you use a while loop?

•	 How can you use a for loop?

•	 How does the break statement differ from the continue 

statement?

•	 How can you use the iter, next, and enumerate 

functions while using loops?

•	 How can you use a nested loop?

ChapTer 5  loops



144

�Exercise 5
E5.1 You have learned nested loops in this chapter. Using the concept, 
can you print the first five multiples of 7 and 8?

E5.2 Can you print the following shape using the for loop(s)?

*
* *
* * *
* * * *
* * * * *

E5.3 Can you print the previous shape using the while loop(s)?
E5.4 How many asterisks do you expect to see by executing the 
following code?

for i in range(20,9,-5):
    print(i)

E5.5 Can you predict the output of the following code?

for index, i in enumerate(range(10,15,2)):
    print(index,i*5)

�Keys to Exercise 5
�E5.1

Here is a sample program:

for i in range(7,9):
    for j in range(1,6):
        print(f"{i}*{j}={i*j}")
    print("-"*10)

ChapTer 5  loops



145

Here is the output:

7*1=7
7*2=14
7*3=21
7*4=28
7*5=35
----------
8*1=8
8*2=16
8*3=24
8*4=32
8*5=40
----------

�E5.2

Here is a sample program:

for i in range(1,6):
    for j in range(1,i+1):
        print("*",end=" ")
    print()

�E5.3

Here is a sample program:

i=1
while i<6:
    j=0
    while j<i:
        print("*",end=" ")

ChapTer 5  loops



146

        j+=1
    print()
    i+=1

�E5.4

You should see three asterisks that should appear for the index locations 

20, 15, and 10.

�E5.5

Here is the output:

0 50
1 60
2 70

�Case Study
Let’s make solutions for the following case studies.

�CS5.1 Problem Statement
Assume that there is an application where users supply some valid 

numbers (so that you do not need to write extra code to validate the 

input). Now write a Python program where a user can keep supplying the 

numbers, and for each input, it can print whether it is a positive number or 

not. The program will end when the user types quit.

ChapTer 5  loops



147

�CS5.2 Problem Statement
Would you like to play a game? It is simple but interesting. The computer 

will pick a number between 1 and 15 for you. You need to guess the 

number. But here is the challenge. To win the game, you need to make a 

correct guess within three attempts. Note another point: each time you 

play the game, the computer can pick a different number for you. Are 

you ready?

For a better understanding, let me show you some sample output:

Case 1: You have lost the game.

The computer has picked a random number for you.
Clue: It is between 1 and 15 (both inclusive).
Can you guess it within 3 attempts? Give it a try.
Enter your answer: 12
It is high. Try again!
Enter your answer: 10
It is high. Try again!
Enter your answer: 8
It is high. Try again!
The computer picked the number: 3.
You have lost the game now!

Case 2: You have won the game.

The computer has picked a random number for you.
Clue: It is between 1 and 15 (both inclusive).
Can you guess it within 3 attempts? Give it a try.
Enter your answer: 5
It is high. Try again!
Enter your answer: 3
It is low. Try again!

ChapTer 5  loops



148

Enter your answer: 4
Excellent. You have guessed it right.
You've taken 3 attempt(s).

Author’s comment:
For a simple illustration, the computer picks a number between 1 and 

15. The game will be more challenging when it picks the number from 

a broader range. Similarly, it becomes easy if it picks the number from a 

narrow range. Once you see the solution, I encourage you to vary the range 

through user input.

�Sample Implementations
Here are the sample implementations for the case studies.

�CS5.1 Implementation
Here is a sample implementation:

# Initially flag contains an empty string.
# We need a string other than quit to enter
# into the while loop to proceed further.
flag = ""
while flag != 'quit':
    user_input = input("Enter a valid number(type quit to end): ")
    # If the user does not type 'quit'
    # We can convert the valid user input to float
    if user_input != 'quit':
        user_input = float(user_input)
    else:
        flag = 'quit'
        break

ChapTer 5  loops



149

    if user_input > 0:
        print("You have supplied a positive number.")
    elif user_input < 0:
        print("The supplied number is negative.")
    else:
        print("You've entered 0.")

print("Thank you. It is the end of the program.")

Here is a sample output:

Enter a valid number(type quit to end): -12.5
The supplied number is negative.
Enter a valid number(type quit to end): 3.7
You have supplied a positive number.
Enter a valid number(type quit to end): 0
You've entered 0.
Enter a valid number(type quit to end): quit
Thank you. It is the end of the program.

Author’s note: You may think: can I use a number (an integer or a float) 

flag to exit from the program? I suggest you not to do so. It is because, in 

that case, your program can suffer from a potential drawback (known as an 

anti-pattern called Zero Means Null). To illustrate, let’s assume that when 

a user presses -999, you’ll end the program. However, if you use -999 to exit 

from the loop, what will you do if you need this number at a later stage? 

Therefore, you should choose the exit criterion wisely.

�CS5.2 Implementation
I made this implementation using the randint() function, the if-elif- 
else chain, and the while loop. You have seen the discussion of the  

if-elif-else chain in Chapter 4, the use of the randint() function 

ChapTer 5  loops



150

in CS4.2 implementation, and the discussion of the while loop in this 

chapter. Refer to the supporting comments and strings that I used in the 

print() functions. Those can help you understand the code easily. Let’s 

see the implementation:

from random import randint

picked_number = randint(1, 15)
print("The computer has picked a random number for you.")
print("Clue: It is between 1 and 15 (both inclusive).")
print("Can you guess it within 3 attempts? Give it a try.")
no_of_attempt = 0
guess = False
user_input = 0  # an initial value
while no_of_attempt < 3:
    # User's input
    user_input = int(input("Enter your answer:"))
    no_of_attempt += 1
    if user_input == picked_number:
        guess = True
        break
    elif user_input > picked_number:
        print("It is high. Try again!")
    else:
        print("It is low. Try again!")
if guess:
    print("Excellent. You have guessed it right.")
    print(f"You've taken {no_of_attempt} attempt(s).")
else:
    print(f"The computer picked the number: {picked_number}.")
    print("You have lost the game now!")

ChapTer 5  loops



151© Vaskaran Sarcar 2025 
V. Sarcar, Python Bootcamp, https://doi.org/10.1007/979-8-8688-1516-4_6

CHAPTER 6

Advanced Data Types
Lists, tuples, and dictionaries are three advanced data types. While using 

them, some of the fundamental concepts in programming will be crystal 

clear to you. This is why this chapter primarily focuses on them.

�Lists
I believe that apart from the strings, integers, floating-point numbers, and 

Booleans, you’ll mostly use lists in your programs. In the previous chapter, 

I gave you a quick overview of lists. There, you learned that you can define 

a list by separating the values inside the square brackets as follows: list_
name=[value1,value2,value3,..]. This kind of arrangement can help 

you to store multiple values in a single variable. You also learned that list 

elements can be any type. Let me show you some other common use cases 

of lists as well.

�Playing with Lists
Let’s go through the following code fragments where the goals and 

supportive notes are mentioned in the comments.

Code:

# I want to display the content of a list
numbers = [1,2.5,3,5.7,9.1]
print(f"The contents of the list are: {numbers}")

https://doi.org/10.1007/979-8-8688-1516-4_6#DOI


152

Output:

The contents of the list are: [1, 2.5, 3, 5.7, 9.1]

Additional note:
You can see that a list can contain different data types.

Code:

# Printing the elements of a list using an index. The
# indexing starts with 0 from the extreme left. (The usage is
# similar to strings.)
names = ["John", "Sam", "Kate"]
print(names[0])
print(names[1])
print(names[2])
# Error: List index out of range
# print(names[3])

Output:

John
Sam
Kate

Explanation:
Notice that the line print(name[3]) is commented. There is currently no 

element at index position 3 in names. So you’ll receive an error if you try to 

use names[3] now. This error is similar to the following:

Traceback (most recent call last):
  �Fi�le "E:\MyPrograms\PythonBootcamp\chapter6\lists_usage.py", 

line 13, in <module>
      print(names[3])
          ~~~~~^^^
IndexError: list index out of range

ChapTer 6 AdVanced DaTa TYpes

153

I placed several code segments in the same file. So, in the previous

segment, line number 13 indicates the error location in my file, which may

differ in your case. The same comment applies to similar error messages
in this book.

Code:

Printing the elements of a list from the extreme right.
In this case, it starts from -1
names = ["John", "Sam", "Kate"]
print(names[-1])
print(names[-2])
print(names[-3])

Output:

Kate
Sam
John

Code:

Let me show you some ways to reverse a list
contents = ["John", 12, "Sam", True, 50.7]
print(f"The original list:{contents}")
print("Reversing the list.")
contents.reverse()
print(f"The modified list is:{contents}")
print("Reversing the list again using the reversed function")
rev_contents=list(reversed(contents))
print(f"Now the list is:{rev_contents}")
print("-"*10)

ChapTer 6 AdVanced DaTa TYpes

154

Output:

The original list:['John', 12, 'Sam', True, 50.7]
Reversing the list.
The modified list is:[50.7, True, 'Sam', 12, 'John']
Reversing the list again using the reversed function
Now the list is:['John', 12, 'Sam', True, 50.7]

Explanation:
There are many different ways to reverse a list. This code segment shows

you two different ways to print the list elements in reverse order.

Code:

Demonstrating the slicing of a list
contents = ["John", 12, "Sam", True, 50.7]
print(f"The original list is: {contents}")
print("Printing the elements from index position 2 to end:")
print(contents[2:])
print("Printing the elements from index position 1 to 3(i.e.4-1):")
print(contents[1:4])

Output:

The original list is: ['John', 12, 'Sam', True, 50.7]
Printing the elements from index position 2 to end:
['Sam', True, 50.7]
Printing the elements from index position 1 to 3(i.e.4-1):
[12, 'Sam', True]

Explanation:
This code segment shows you examples of slicing. When you use

contents[2:], you consider elements starting from index 2 to the end

of the list. When you use contents[1:4], you consider elements starting

from index 1 to index 4-1, i.e., 3.

ChapTer 6 AdVanced DaTa TYpes

155

Code:

Showing some more slicing examples
contents = ["John", 12, "Sam", True, 50.7]
pr�int("Omitting the first index to start slicing at the
beginning.")

print(contents[:4])
print("Omitting both indexes is allowed as well.")
print(contents[:])
pr�int("Printing the first element while skipping every
second one.")

print(contents[0::2])
print("The reverse list is as follows:")
print(contents[::-1])

Output:

Omitting the first index to start slicing at the beginning.
['John', 12, 'Sam', True]
Omitting both indexes is allowed as well.
['John', 12, 'Sam', True, 50.7]
Printing the first element while skipping every second one.
['John', 'Sam', 50.7]
The reverse list is as follows:
[50.7, True, 'Sam', 12, 'John']

Explanation:
You can see that omitting the first index is allowed. In this case, the slice

starts at the beginning. When you omit both indexes, the slice is a copy of

the whole list. The next segment in this output shows that by using a step

value (2), you can skip every second element from a list. The final segment

is interesting: it shows one more technique to reverse a list.

ChapTer 6 AdVanced DaTa TYpes

156

Code:

You can reassign a new value inside the list
list_contents = ["John", 12, "Sam", True, 50.7]
print(f"The original list: {list_contents}")
print("Changing the element at index 2.")
list_contents [2] = "Bob"
print(f"Now the list is: {list_contents}")

Output:

The original list: ['John', 12, 'Sam', True, 50.7]
Changing the element at index 2.
Now the list is: ['John', 12, 'Bob', True, 50.7]

Explanation:
Lists are mutable. You can see that I’ve set a new value at index position 2.

So, instead of 'Sam', you see 'Bob' inside this modified list.

Code:

Concatenation example
contents1 = ["John", 12, 50.7]
contents2 = ["Sam", 25, "John", False, 100.2]
print("Original lists are:")
print(contents1)
print(contents2)
print("After concatenating the lists, you get the following list:")
print(contents1 + contents2)

Output:

Original lists are:
['John', 12, 50.7]
['Sam', 25, 'John', False, 100.2]

ChapTer 6 AdVanced DaTa TYpes

157

After concatenating the lists, you get the following list:
['John', 12, 50.7, 'Sam', 25, 'John', False, 100.2]

Explanation:
There are various ways to concatenate multiple lists. The simplest among

them is to use the “+” operator. One sample usage of this is shown in the

example.

The concatenated list can have duplicates; for example, once you

concatenate the lists, notice that 'John' from both lists is present in the

new list.

Code:

Printing a specific number of elements of a list from the end.
sample_list = ["John", 12, "Sam", True, 50.7]
print(f"The original list is: {sample_list}")
print(f"The last 3 elements of the list are: {sample_list[-3:]}")
print(f"The last 2 elements of the list are: {sample_list[-2:]}")
print(f"The last element of the list is: {sample_list[-1]}")

Output:

The original list is: ['John', 12, 'Sam', True, 50.7]
The last 3 elements of the list are: ['Sam', True, 50.7]
The last 2 elements of the list are: [True, 50.7]
The last element of the list is: 50.7

Code:

Removing list elements using three different approaches
contents = ["John", 12, "Sam", True, 50.7,12]
print(f"The original list is: {contents}")
print("Removing the element at index 2 using the del function.")
del(contents[2])

ChapTer 6 AdVanced DaTa TYpes

158

print(f"Now the list is: {contents}")
print("Removing the element at index 3 using the pop function.")
contents.pop(3)
print(f"Now the list is: {contents}")
pr�int("Removing the first occurrence of 12 using the remove
function.")

contents.remove(12)
print(f"Now the list is: {contents}")

Output:

The original list is: ['John', 12, 'Sam', True, 50.7, 12]
Removing the element at index 2 using the del function.
Now the list is: ['John', 12, True, 50.7, 12]
Removing the element at index 3 using the pop function.
Now the list is: ['John', 12, True, 12]
Removing the first occurrence of 12 using the remove function.
Now the list is: ['John', True, 12]

Additional note:
This example shows the use of the del, pop, and remove functions to

modify a list. Initially, the number 12 was present twice in the list. You can

see that the remove function removed the first occurrence of 12. Notice that

another occurrence of 12 is still present in this modified list.

Code:

Checking whether an element is present inside a list
names = ["John", "Sam","Bob", "Ester"]
print(f"Is 'Sam' present on the list? {'Sam' in names} ")
print(f"Is 'sam' present on the list? {'sam' in names} ")
Checking whether an element is absent in this list
pr�int(f"Is 'Jeniffer' missing from the list? {'Jennifer' not in
names}")

ChapTer 6 AdVanced DaTa TYpes

159

Output:

Is 'Sam' present on the list? True
Is 'sam' present on the list? False
Is 'Jeniffer' missing from the list? True

Explanation:
List elements are case-sensitive. So the element ’Sam’ is different from

the element ’sam’. You can also see that “not in” was used to perform

the reverse check. This is why the statement print('Jennifer' not in
names) outputs True.

Code:

Finding the maximum and minimum from a number list
numbers = [1, 23, 56.2, -3.7, 999]
print("The original list is:")
print(numbers)
print(f"The largest number is: {max(numbers)}")
print(f"The smallest number is: {min(numbers)}")

Output:

The original list is:
[1, 23, 56.2, -3.7, 999]
The largest number is: 999
The smallest number is: -3.7

Additional note:
The max() and min() functions will NOT work if the list contains a mix

of numbers and strings. For example, if you try to execute the following

code segment

ChapTer 6 AdVanced DaTa TYpes

160

The max function cannot work on the following list
contents = [1, 23, -3.7, 999, "abc", "bob"]
print("The original list is:")
print(contents)
print(f"The largest number is: {max(contents)}")

you’ll see the error TypeError: '>' not supported between
instances of 'str' and 'int'.

Code:

Testing booleans with max() and min()
contents = [0.75, True, False, 0.5, 0.6, 1, 0]
print(f"The original list: {contents}")
print(f"The largest number: {max(contents)}")
print(f"The smallest number: {min(contents)}")

Output:

The original list: [0.75, True, False, 0.5, 0.6, 1, 0]
The largest number: True
The smallest number: False

Explanation:
By design, if you use these Boolean values in a numerical context, there is

no error; True is treated as 1, and False is treated as 0. So, in this case, you

can see the largest number is True and the smallest number is False.

To test this fact, let’s consider the following list: contents = [0.75,
1, 0, 0.5, 0.6, True, False]. Notice that I have interchanged the

positions of True and 1 in this list. Also, I have interchanged the positions

of False and 0 here.

ChapTer 6 AdVanced DaTa TYpes

161

Once you run this modified segment, you can see the following output:

The original list: [0.75, 1, 0, 0.5, 0.6, True, False]
The largest number: 1
The smallest number: 0

You can see that False and True behave like 0 and 1. However, the

official link Built-in Types – Python 3.13.3 documentation discourages you

from relying on this. In Chapter 3, I already mentioned that the online link

wants you explicitly convert using int(), if required.

Code:

You can add an element or a list of elements at the end
of a list
contents = ["John", 12, "Sam"]
print(f"The original list is:{contents}")
print("Appending 25 at the end of the list.")
contents.append(25)
print(f"After adding 25, the list is: {contents}")
pr�int("Appending a list of elements ['Kate', 20] at the end of
the list.")

contents.append(['kate',20])
print(f"Now the list is: {contents}")
contents.append(10,20) # error

Output:

The original list is:['John', 12, 'Sam']
Appending 25 at the end of the list.
After adding 25, the list is: ['John', 12, 'Sam', 25]
Ap�pending a list of elements ['Kate', 20] at the end of
the list.

Now the list is: ['John', 12, 'Sam', 25, ['Kate', 20]]

ChapTer 6 AdVanced DaTa TYpes

https://docs.python.org/3/library/stdtypes.html

162

Additional note:
Using append(), you can add one element at a time. If you try to append

multiple elements like contents.append(10,20), you can see an error

that states the following: TypeError: list.append() takes exactly one
argument (2 given). However, you can use this function to add a list that

contains multiple elements.

Author's note: Shortly, you’ll see me comparing the append() and

extend() functions in Q6.2.

Code:

Using the insert function, you can add an element to a
particular position
contents = ["John", 12, "Sam", True, 50.7]
print("The original list is:")
print(contents)
print("Inserting the element 'Jack' at index 3.")
contents.insert(3, "Jack")
print(f"Now the list is:{contents}")

Output:

The original list is:
['John', 12, 'Sam', True, 50.7]
Inserting the element 'Jack' at index 3.
Now the list is:['John', 12, 'Sam', 'Jack', True, 50.7]

Code:

Sorting a list
numbers = [33, 11, 555, 77, 111, 333]
print(f"The original list is: {numbers}")
numbers.sort()

ChapTer 6 AdVanced DaTa TYpes

163

print(f"The sorted list in ascending order: {numbers}")
print("Now sorting the list in descending order.")
numbers.sort(reverse = True)
print(f"Now the list is: {numbers}")

Output:

The original list is: [33, 11, 555, 77, 111, 333]
The sorted list in ascending order: [11, 33, 77, 111, 333, 555]
Now sorting the list in descending order.
Now the list is: [555, 333, 111, 77, 33, 11]

Additional note:
Remember the following information while you use the sort() function:

It changes the original list. If you want to avoid modifying
the original list, you can refer to the sorted() function, which I'll
discuss next.

You can sort a list if all the elements are of the same data type. If you

have mixed data types in your list and you apply sort() on those elements,

you’ll encounter errors. For example, if you execute the following

code segment

contents = ["John", 12, "Sam", True, 50.7]
contents.sort() # Error now

you’ll see the following error: TypeError: '<' not supported between

instances of 'int' and 'str'.

�Q&A Session

Q6.1 I understand that lists are mutable. I also recognize that sorting
can be helpful in certain scenarios. However, while sorting a list, is
there any way to prevent the modification of the original list?

ChapTer 6 AdVanced DaTa TYpes

164

Programmatically, you can always have a backup. However, let me also tell

you that by using the sorted function, you can prevent modification to the

original list. Let’s examine the following code:

numbers = [33, 11, 555, 77, 111, 333]
print(f"The list of numbers are: {numbers}")
print(f"The sorted list: {sorted(numbers)}")
print(f"The current list of numbers is: {numbers}")

Upon executing this code, you can get the following output:

The list of numbers are: [33, 11, 555, 77, 111, 333]
The sorted list: [11, 33, 77, 111, 333, 555]
The current list of numbers is: [33, 11, 555, 77, 111, 333]

In short, you may note the following points from the
official documentation (see Sorting Techniques – Python 3.13.3

documentation):

•	 The list.sort() method modifies the list in place

(and returns None to avoid confusion). Usually, it’s less

convenient than sorted() - but if you don’t need the

original list, it’s slightly more efficient.

•	 In addition, the list.sort() method is only defined

for lists. In contrast, the sorted() function accepts any

iterable.

Finally, remember that you should use this function on the same

data types.

Q6.2 When you used the append function, you got the modified list
as ['John', 12, 'Sam', 25, ['Kate', 20]], where the last element
is itself a list. However, I'd like to know whether I could append the
elements in such a way that I make a plain list.

ChapTer 6 AdVanced DaTa TYpes

https://docs.python.org/3/howto/sorting.html
https://docs.python.org/3/howto/sorting.html
https://docs.python.org/3/library/stdtypes.html#list.sort
https://docs.python.org/3/library/functions.html#sorted
https://docs.python.org/3/library/stdtypes.html#list.sort
https://docs.python.org/3/library/functions.html#sorted

165

You can add multiple elements to a list using the extend function:

contents = ["John", 12, "Sam"]
print(f"The original list is:{contents}")
print("Adding 25,'Kate', and 100.2 at the list end.")
contents.extend([25, 'Kate', 20])
print(f"Now the list is:{contents}")

Upon executing this code, you can get the following output:

The original list is:['John', 12, 'Sam']
Adding 25,'Kate', and 20 at the list end.
Now the list is:['John', 12, 'Sam', 25, 'Kate', 20]

You can see that when you used the append function, you got the

modified list as ['John', 12, 'Sam', 25, ['Kate', 20]] where the last

element is itself a list. However, after using the extend function, you got a

plain list: ['John', 12, 'Sam', 25, 'Kate', 20].

�Tuples
Tuples are another important data type and are similar to lists. But there

are some noticeable differences. Let’s see them:

First, tuples are immutable. This means that once created, you cannot

incorporate changes in them. However, you have seen that lists can be

modified. For example, you reassigned a value in a list, you extended a list,

etc. So lists are mutable.

Next, declaring a tuple is similar to a list, but this time, you’d put

elements inside the round brackets (but not the square brackets) as

follows:

contents = ("John", 12, "Sam", True, 50.7)

ChapTer 6 AdVanced DaTa TYpes

166

However, you may note that while creating a tuple, the use of

parentheses is optional. To verify this, let us see the following segment and

the associated output:

>>> contents="Sam",1,"Bob"
>>> type(contents)
<class 'tuple'>

Finally, all the functions that are available for lists are not available
for tuples. For example, if you write the following

contents = ("John", 12, "Sam", True, 50.7)
contents.remove(12) # error

you can notice the error saying

AttributeError: 'tuple' object has no attribute 'remove'

Or if you write the following

contents.append("Jack") # error

you can notice the error saying

AttributeError: 'tuple' object has no attribute 'append'

However, there are also some similarities with lists. For example, see

the following code:

>>> contents = ("John", 12, "Sam", True, 50.7)
>>> contents[1]
12

Or use the slice operator as follows:

>>> contents[0:3]
('John', 12, 'Sam')

You can also convert a list to a tuple.

ChapTer 6 AdVanced DaTa TYpes

167

�Playing with Tuples
Let’s examine some built-in functions for tuples.

Code:

Creating a tuple and printing the elements inside it.
contents = ("John", 12, "Sam", True, 50.7)
print(f"The content of the tuple is: {contents}")

Output:

The content of the tuple is: ('John', 12, 'Sam', True, 50.7)

Code:

Accessing the tuple elements (indexing is similar to the lists)
contents = ("John", 12, "Sam", True, 50.7)
print(f"The content of the tuple is: {contents}")
print(f"The first element is: {contents[0]}")
print(f"The last element is: {contents[-1]}")
print(f"Elements from index 1 to 3: {contents[1:4]}")
print(f"Elements from index 2 to end: {contents[2:]}")

Output:

The content of the tuple is: ('John', 12, 'Sam', True, 50.7)
The first element is: John
The last element is: 50.7
Elements from index 1 to 3: (12, 'Sam', True)
Elements from index 2 to end: ('Sam', True, 50.7)

Code:

You cannot reassign the value inside a tuple.
my_tuple = ("John", 12, "Sam", True, 50.7)
print("The content of my_tuple is:")

ChapTer 6 AdVanced DaTa TYpes

168

print(my_tuple)
print("Trying to replace 'Sam' with 'Bob':")
my_tuple[2]= 'Bob' # Error

Output:
The last line of this code segment will raise the following error:

TypeError: 'tuple' object does not support item assignment

Explanation:
Tuples are immutable by design. This is why you cannot modify them.

Code:

Converting a list to a tuple by using the built-in tuple()
function
list_sample = ["John", 12, "Sam", True, 50.7]
print(f"The contents of the list are:{list_sample}")
Converting the list to a tuple
tuple_sample = tuple(list_sample)
print(f"The contents of the tuple are:{tuple_sample}")

Output:

The contents of the list are:['John', 12, 'Sam', True, 50.7]
The contents of the tuple are:('John', 12, 'Sam', True, 50.7)

Explanation:
You can use the built-in tuple() function to convert a list to a tuple. In fact,

you can use this function to create an empty tuple. Here is a sample:

>>> sample_tuple=tuple()
>>> sample_tuple
()
>>> type(sample_tuple)
<class 'tuple'>

ChapTer 6 AdVanced DaTa TYpes

169

Code:

Reversing the tuple elements
sample_tuple = (1, 2, 3, 4, 5)
print(f"The contents of the tuple are: {sample_tuple}")
print("Reversing the tuple now.")
rev_tuple = tuple(reversed(sample_tuple))
print(f"The contents of rev_tuple are: {rev_tuple}")

Output:

The contents of the tuple are: (1, 2, 3, 4, 5)
Reversing the tuple now.
The contents of rev_tuple are: (5, 4, 3, 2, 1)

Code:

Replacing one tuple with another
sample_tuple = (1, 2, 3, 4, 5)
print(f"The contents of sample_tuple are: {sample_tuple}")
sample_tuple = ("a","b") + sample_tuple[2:]
print(f"The contents of sample_tuple are: {sample_tuple}")

Output:

The contents of sample_tuple are: (1, 2, 3, 4, 5)
The contents of sample_tuple are: ('a', 'b', 3, 4, 5)

Explanation:
Since tuples are immutable, you cannot modify elements. However, this

example demonstrates that you can replace one tuple with another. In

this case, you made a new tuple, and sample_tuple now refers to this

new tuple.

ChapTer 6 AdVanced DaTa TYpes

170

Code:

Testing relational operators
tuple_sample1 = (1, 2, 3)
tuple_sample2 = (1,1,250)
tuple_sample3 = (0,50,500)
print(f"The contents of tuple_sample1 are: {tuple_sample1}")
print(f"The contents of tuple_sample2 are: {tuple_sample2}")
print(f"The contents of tuple_sample3 are: {tuple_sample3}")
pr�int(f"tuple_sample1 < tuple_sample2 ? {tuple_sample1 <
tuple_sample2}")

pr�int(f"tuple_sample2 > tuple_sample3 ? {tuple_sample2 >
tuple_sample3}")

Output:

The contents of tuple_sample1 are: (1, 2, 3)
The contents of tuple_sample2 are: (1, 1, 250)
The contents of tuple_sample3 are: (0, 50, 500)
tuple_sample1 < tuple_sample2 ? False
tuple_sample2 > tuple_sample3 ? True

Explanation:
You can use relational operators to compare tuples (and other sequences).

Here, the comparison starts with the first element of each sequence. If they

are equal, it checks the next element and so on, until it finds the difference.

Once the difference is found, the subsequent elements are not considered

(even if they are big).

ChapTer 6 AdVanced DaTa TYpes

171

�Q&A Session

Q6.3 You said that while creating a tuple, the use of parentheses is
optional. However, if I write content="a", the terminal shows that it is a
string type. Here is a sample:

>>> content="a"
>>> type(content)
<class 'str'>

I also see that a value in parentheses is not a tuple. See the following:

>>> content=("a")
>>> type(content)
<class 'str'>

Am I noticing the correct behavior?
Yes, you are seeing the correct behavior.

Q6.4 If the previous codes show the correct behavior, I'd like to know
how to make a tuple with a single element.
You need to use a final comma. Let’s see the following code:

>>> content="a",
>>> type(content)
<class 'tuple'>

In the same way, you can validate the other code:

>>> content=("a"),
>>> type(content)
<class 'tuple'>

ChapTer 6 AdVanced DaTa TYpes

172

Q6.5 When should I prefer tuples over lists?
You should prefer tuples to represent constants like

days_of_week = ("Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday", "Sunday")

Since they are immutable, they offer faster performance.

�Dictionaries
Now, you see the use of another important data type called the

dictionary. These are some noticeable characteristics of this data type:

•	 It is a collection of key–value pair(s). These keys and

values can be of any type.

•	 The keys are unique.

•	 Dictionaries are indexed through their keys.

•	 When you create a dictionary, you wrap the key–value

pairs in braces as follows: dictionary_sample = {1:
"John", 2: 12, 3: "Sam"}.

�Playing with Dictionaries
Let us examine them now.

Code:

Printing the details of a dictionary that has three key-
value pairs
dictionary_sample = {1: "John", 2: 12, 3: "Sam"}
print(f"The dictionary contains: {dictionary_sample}")

ChapTer 6 AdVanced DaTa TYpes

173

Output:

The dictionary contains: {1: 'John', 2: 12, 3: 'Sam'}

Code:

A dictionary can have keys and values of different types
dictionary_sample = {1: "John", 2: 12, "third": "Sam", }
print(f"The dictionary contains: {dictionary_sample}")

Output:

The dictionary contains: {1: 'John', 2: 12, 'third': 'Sam'}

Code:

I want to print values for particular keys
dictionary_sample = {1: "John", 2: 12, "three": "Sam"}
print(f"The dictionary contains: {dictionary_sample}")
print("Value at key 1:", dictionary_sample[1])
print("Value at key 2:", dictionary_sample[2])
print("Value at key three:", dictionary_sample["three"])

Output:

The dictionary contains: {1: 'John', 2: 12, 'three': 'Sam'}
Value at key 1: John
Value at key 2: 12
Value at key three: Sam

Code:

Finding the total number of elements in your dictionary.
dictionary_sample = {1: "John", 2: 12}
print(f"The dictionary contains: {dictionary_sample}")
print(f"Number of items: {len(dictionary_sample)}")

ChapTer 6 AdVanced DaTa TYpes

174

Output:

The dictionary contains: {1: 'Bob', 2: 12}
Number of contents: 2

Explanation:
The output shows that you can use the len() function to determine the

total number of elements in your dictionary.

�Q&A Session

Q6.6 Can I reassign a different value to the key of a dictionary?
Yes. However, in that case, the dictionary will keep the last assigned value.

For example, if you execute the following code

dictionary_sample = {1: "John", 2: 12, 1: "Bob"}
print(f"The dictionary contains: {dictionary_sample}")
print("Value at key 1:", dictionary_sample[1])

you’ll see the following output:

The dictionary contains: {1: 'Bob', 2: 12}
Value at key 1: Bob

You can see that the dictionary holds the last assigned value Bob,

for key 1.

�Summary
This chapter discussed lists, tuples, and dictionaries using various code

segments, useful built-in functions, and associated outputs. In Chapter 3,

you learned strings, numbers, and Booleans. These are the most common

data types in Python programming.

ChapTer 6 AdVanced DaTa TYpes

175

�Exercise 6
E6.1 Create a list that contains at least three elements. Then, remove

the last two elements from the list.

E6.2 Is there any problem in the following code?

sample_tuple = (1, 2, 3, "Sam", 5)
print(sample_tuple[2:6])

E6.3 Predict the output of the following code:

sample_tuple = (1, 2, 3, 4, 5)
first=sample_tuple[0]
print(f"Got first: {first}")
last=sample_tuple[-1]
print(f"Got last: {last}")
print(f"first+last: {first+last}")

E6.4 Predict the output of the following code:

sample_tuple = (1, 2, 3, 4, 5)
first=sample_tuple[:1]
print(f"Got first: {first}")
last=sample_tuple[-1:]
print(f"Got last: {last}")
print(f"first+last: {first+last}")

E6.5 Consider the following dictionary:

sample_dictionary = {1:"One", 5:"Five", 3:"Three", 2:"Two"}

Can you traverse the keys in sorted order and display the
corresponding values?

ChapTer 6 AdVanced DaTa TYpes

176

E6.6 Predict the output of the following code:

dictionary_sample = {1: "John", 2: 12, 1:"Bob"}
print(f"The dictionary contains: {dictionary_sample}")
print(f"Number of items: {len(dictionary_sample)}")

�Keys to Exercise 6
Here is a sample solution set.

�E6.1

contents = ["John", 12, 25,"Sam", True, 50.7]
print(f"The original list is: {contents}")
Removing the last two elements from the list
del(contents[-2:])
print(f"Now the list is: {contents}")

Here is the output:

The original list is: ['John', 12, 25,'Sam', True, 50.7]
Now the list is: ['John', 12, 25,'Sam']

�E6.2

Interestingly, this code will not raise any error, and you’ll see the

following output:

(3, 'Sam', 5)

However, remember that when you use a single index, you cannot go

beyond the bounds. For example, the following code

print(sample_tuple[5]) # Error

ChapTer 6 AdVanced DaTa TYpes

177

will raise an error saying IndexError: tuple index out of range. So

you can see that Python is more forgiving if you try to retrieve a slice.

�E6.3

You should see the following output:

Got first: 1
Got last: 5
first+last: 6

�E6.4

You’d see the following output:

Got first: (1,)
Got last: (5,)
first+last: (1, 5)

Additional note: Compare the outputs of E6.3 and E6.4. Can you see

the difference? When you perform slicing, you get back the same type.

For example, slicing a list will give you a list, slicing a tuple will give you

a tuple, and so on. However, if you retrieve an individual element from

the sequence, you’ll get whatever was stored in that location – it does not

guarantee the sequence type.

�E6.5

Here is a sample solution:

sample_dictionary={1:"One", 5:"Five", 3:"Three", 2:"Two"}
print(f"The given dictionary is: {sample_dictionary}")
keys_sorted=sorted(sample_dictionary)
print(f"Traversing the keys in the sorted order.")
for key in keys_sorted:
 print(key,sample_dictionary[key])

ChapTer 6 AdVanced DaTa TYpes

178

Here is a sample output:

Th�e given dictionary is: {1: 'One', 5: 'Five', 3: 'Three', 2: 'Two'}
Traversing the keys in the sorted order.
1 One
2 Two
3 Three
5 Five

�E6.6

You should see the following output:

The dictionary contains: {1: 'Bob', 2: 12}
Number of items: 2

Author's note: Since you reassigned a value (’Bob’) for the same key (1),

the number of items in the dictionary is 2, not 3.

�Case Study
Let’s focus on the following case studies.

�CS6.1 Problem Statement
Make an application where a user can keep entering his favorite names.

Once the user enters “quit,” the application will display names that have at

least four characters.

ChapTer 6 AdVanced DaTa TYpes

179

�CS6.2 Problem Statement
Let us design a multiple-choice question bank. Each question has four

options. The user needs to pick the correct answer among these options.

Once the test is over, he can see the score.

For a better understanding, let me supply some sample output for you:

Welcome to the MCQ test.
=========================
Q1.What is the value of the expression:2*3-4?
(a)1
(b)2
(c)3
(d)None.
Type your answer(a/b/c/d): b

Q2.What is the value of the expression:1+(2*3)/4?
(a)1.5
(b)3
(c)2.5
(d)None.
Type your answer(a/b/c/d): d

Q3.The list data type can hold duplicate values. The
statement is:
(a)True
(b)False
(c)Partially correct.
(d)None.
Type your answer(a/b/c/d): a

Your Score: 2 out of 3

ChapTer 6 AdVanced DaTa TYpes

180

Author’s comment: Once you get the idea, you can add more questions

to this test. The test is more challenging when you do not pick a fixed

set of questions. Instead, you can select a specific number of questions

at random from an extensive set of questions. At this stage, you can

work with a fixed number of questions only. You can also avoid input

validations now.

�Sample Implementations
Let’s see the sample implementations for the case studies.

�CS6.1 Implementation
Here is a sample implementation:

flag = ""
long_names=[]
while flag != 'quit':
 user_input = input("Enter a name (type quit to end): ")
 if user_input =='quit':
 flag = 'quit'
 break
 elif len(user_input) > 3:
 long_names.append(user_input)
print(f"The names with at least four characters: {long_names}")

Here is a sample output:

Enter a name (type quit to end): Sam
Enter a name (type quit to end): Jack
Enter a name (type quit to end): Shyam
Enter a name (type quit to end): Jo
Enter a name (type quit to end): Jennifer

ChapTer 6 AdVanced DaTa TYpes

181

Enter a name (type quit to end): Ron
Enter a name (type quit to end): quit
Th�e names with at least four characters: ['Jack','Shyam',
'Jennifer']

�CS6.2 Implementation
I used a dictionary to store answers to the questions. I also used the len()

function to get the total number of questions in this question bank. To

beautify the output, I print the questions and corresponding options on

new lines. Here is a sample implementation for you:

All questions
question1 = "Q1.What is the value of the expression:2*3-4?" \
 "\n(a)1" \
 "\n(b)2" \
 "\n(c)3" \
 "\n(d)None."
question2 = "\nQ2.What is the value of the
expression:1+(2*3)/4?" \
 "\n(a)1.5" \
 "\n(b)3" \
 "\n(c)2.5" \
 "\n(d)None."
question3 = "\nQ3.The list data type can hold duplicate
values." \
 "The statement is:" \
 "\n(a)True" \
 "\n(b)False" \
 "\n(c)Partially correct." \
 "\n(d)None."

ChapTer 6 AdVanced DaTa TYpes

182

Storing the questions with answer keys
inside the following dictionary.
question_bank = {question1: "b",
 question2: "c",
 question3: "a"}
print("Welcome to the MCQ test.")
print("="*25)
score = 0 # initial value
for key in question_bank:
 print(key)
 user_input = input("Type your answer(a/b/c/d): ")
 if user_input == question_bank[key]:
 score += 1
print(f"\nYour Score: {score} out of {len(question_bank)}")

�Possible Improvements

To improve the implementation, you can use a function to make a better

implementation. In Chapter 7, you’ll learn about functions. At the end of

Chapter 7, you’ll see a better solution.

To improve the project, you can consider storing more questions

and picking a subset of these questions at random. You may also note that

CS4.2 implementation showed you how to dynamically change data in an

expression. You can bring that concept here as well.

ChapTer 6 AdVanced DaTa TYpes

183© Vaskaran Sarcar 2025
V. Sarcar, Python Bootcamp, https://doi.org/10.1007/979-8-8688-1516-4_7

CHAPTER 7

Functions and
Modules
This chapter covers user-defined functions, lambda functions, and

modules. Using them, you can organize your code in a better way.

�Function Overview
You can consider a function as a logical set of statements that perform

a specific task. Using them, you can divide your code into manageable

pieces, which in turn help you optimize and reuse the code. When you see

a function usage in someone’s code, you notice the following things:

•	 They define the function to describe a behavior.

•	 They call the function single or multiple times.

�Characteristics
An ordinary function has a name and a body. Before I discuss more about

functions, let me cover the following points:

https://doi.org/10.1007/979-8-8688-1516-4_7#DOI

184

A function definition begins with the def keyword. Then, you type

the function name with the parameters (if any). Finally, a def statement

ends with a colon. Let me show you a simple function that is as follows:

def print_hello():
 print("Hello")

You can invoke this function using the following code: print_hello().

Once you invoke this function, it’ll print Hello. You’ll see the complete

demonstration shortly.

The statements of the body of the function are indented. This format

is used to show that all these statements belong to the function.

POINTS TO REMEMBER

If you use the pyCharm Ide, once you press enter to go to the next line, this

indentation is automatic. however, it's up to you how many spaces you want

to indent your code. for example, you can use a tab or space, but you should

not mix both.

Previously, you’ve seen a function that does not accept any parameter.

However, a function can have zero, one, or more parameters. For

example, consider the following function, called print_details, which

takes two parameters – the first one is for a name, and the second one is

for an age:

def print_details(name,age):
 print(f"Hello {name}! How are you?")
 print(f"You are now {age}.")

To invoke this function, you can use the following line of code:

print_details("Bob",20)

ChapTer 7 funcTions and Modules

185

Upon executing this code, you can see the following output:

Hello Bob! How are you?
You are now 20.

You can have function documentation. Function documentation

helps others to understand what the function does. You can also print this

documentation using <your_function_name>.__doc__. Note that you’re

seeing the use of double underscores here. To understand this, let me add

some documentation to the previous function as follows:

def print_details(name,age):
 """
 This function takes two parameters.
 You can supply the name and age of the user
 in this function.
 """
 print(f"Hello {name}!How are you?")
 print(f"You are now {age}.")

Now, if you want, you can print this documentation using the following

line of code: print(print_details.__doc__).

�Demonstration 7.1

Go through the following demonstration. It contains all the functions and

associated codes that I have discussed so far:

The following function does not take any argument
def print_hello():
 print("Hello")

The following function has two parameters.

ChapTer 7 funcTions and Modules

186

def print_details(name, age):
 """
 This function takes two parameters.
 You can supply the name and age of the user
 in this function.
 """
 print(f"Hello {name}! How are you?")
 print(f"You are now {age}.")

print("Calling the function that has no parameter.")
print_hello()
print("Now, calling the function that has two parameters.")
print_details("Bob", 20)

�Output

Here is the output:

Calling the function that has no parameter.
Hello
Now, calling the function that has two parameters.
Hello Bob! How are you?
You are now 20.

�Analysis

Notice that when I call print_details("Bob", 20), I pass two arguments

in the function call. The first one is a string, and the second is a number.

This demonstrates that a function can have multiple parameters that can

be of different types.

You can repeat function calls, and you can vary the arguments. In

Demonstration 7.1, you have seen the following line:

print_details("Bob",20)

ChapTer 7 funcTions and Modules

187

You can repeat the line as many times as you want. You can also vary

the arguments of your function. So the following segment of code

def print_details(name,age):
 """
 This function takes two parameters.
 You can supply the name and age of the user
 in this function.
 """
 print(f"Hello {name}! How are you?")
 print(f"You are now {age}.")

print_details("Bob", 20)
You can repeat function calls.
print_details("Bob", 20)
You can vary the arguments of the functions
print_details("Sam", 35)

can produce the following output:

Hello Bob! How are you?
You are now 20.
Hello Bob! How are you?
You are now 20.
Hello Sam! How are you?
You are now 35.

�Q&A Session

Q7.1 You are using the words parameters and arguments. Is there any
difference?
Developers often use the words arguments and parameters

interchangeably. However, expert programmers are particular about this.

The variables in a function definition are called the function’s parameters.

For example, when you see the following function definition

ChapTer 7 funcTions and Modules

188

def print_details(name,age):
 # some code

the name and age are called parameters (or formal parameters) of

the function print_details. But, when you invoke the function using

the code print_details("Bob",20), we say that "Bob" and 20 are the

arguments that you’ve passed to this function. Similarly, in the line print_
details("Sam",30), "Sam" and 30 are arguments. Many developers refer

to them as actual parameters as well.

You can say that we pass the arguments to a function. These values

are assigned to the function parameters. However, I already mentioned

that some programmers do not emphasize these terms too much. So they

interchangeably use these terms.

�Discussion on Function Arguments
You are now familiar with function arguments and parameters. These are

essential to understand the upcoming section. Let us take a deeper look at

a function argument now.

�Positional Argument
In the previous segment of code, instead of writing the code print_
details("Bob",20), if you write

print_details(20,"Bob") # Unexpected outcome

you’ll receive the following output:

Hello 20! How are you?
You are now Bob

ChapTer 7 funcTions and Modules

189

Oh …no! How is this possible? Yeah, you’ve guessed it right. You

needed to pass the arguments in the correct order. For example, in this

case, 20 is assigned for the name parameter (as it is in the first position

in the function definition), and "Bob" is assigned for the age parameter

(which is in the second position in the function definition). Unless you

specify these differently, by default, Python expects that you pass the

arguments following the order of the parameters that are defined in the

function definition. When the values are matched in this way, you say that

you are following positional arguments.

�Keyword Arguments
Let us invoke the function differently. This time, I use the following lines:

print_details(age=20,name="Bob") # Expected outcome
print_details(name="Bob", age=20) # Again expected outcome

As mentioned in the comments, in both cases, you get the expected

result. You can verify the result when you execute the code. For example, in

the previous demonstration, execute the following two lines of code. You’ll

see the following output:

Hello Bob! How are you?
You are now 20
Hello Bob! How are you?
You are now 20

So what we see now is that when you pass arguments in this name–

value pair, you will always see the expected result. Programmatically, these

are called keyword arguments.

ChapTer 7 funcTions and Modules

190

�Use of Default Values
Instead of supplying values for each of the parameters, you can pass some

default values to them. To demonstrate, let’s modify the previous function

definition as follows:

Using default values in a function
def print_details(name="Sam",age=35):
 """
 This function takes two parameters.
 You can supply the name and age of the user
 in this function.
 By default, the name is 'Sam' and the age is 35.
 """
 print(f"Hello {name}! How are you?")
 print(f"You are now {age}.")

Notice the presence of (name="Sam”,age="35") in the updated

function. You can see that I’ve added the following line in the function

documentation as well:

By default, the name is 'Sam' and the age is 35.

You know that it is a documentation comment, and it is optional for

you. But the changes in the modified function definition tell us that from

now onward, you can invoke the function with or without parameters. It is

because you have supplied default values for all these parameters.

�Demonstration 7.2

Let us verify the understanding by executing the following program (I have

kept the supportive comments for your easy understanding):

Using default values in a function
def print_details(name="Sam",age=35):

ChapTer 7 funcTions and Modules

191

 """
 This function takes two parameters.
 You can supply the name and age of the user
 in this function.
 By default, the name is 'Sam' and the age is 35.
 """
 print(f"Hello {name}! How are you?")
 print(f"You are now {age}.")

print_details() # Will take both the default values
print_details(name="Jack") # Will take age=35 as default
print_details(age=45) # Will take name="Sam" as default
None of the default values are considered in the
following line
print_details("Bob", 20)

�Output

Upon executing the program, you’ll see the following output:

Hello Sam! How are you?
You are now 35.
Hello Jack! How are you?
You are now 35.
Hello Sam! How are you?
You are now 45.
Hello Bob! How are you?
You are now 20.

ChapTer 7 funcTions and Modules

192

�Warning

In Python, a function parameter without a default value cannot follow

a function parameter with a default value. To illustrate, if you write

something like

def print_details(name="Sam",age): # Incorrect
 # The function body

you’ll see the following error:

def print_details(name="Sam",age):
 ^^^
SyntaxError: parameter without a default follows parameter with
a default

To overcome this error, you need to alter their positions in the function

definition. For example, the following segment displays the correct order:

def print_details(age, name="Sam"): # Correct
 # The function body

�Q&A Session

Q7.2 What are the benefits of using default values in a function?
Here are some typical benefits:

•	 Sometimes, you may not wish to pass all values in your

function invocation, and you can type less.

•	 You may discover that in some specific function calls, a

particular argument does not vary.

•	 You are not sure what to pass when a function is

executing.

ChapTer 7 funcTions and Modules

193

�Variable Arguments
Till now, you have seen functions that do not return any value. However,

most often, you’ll use functions that return values. For example, if you

execute the following code

def calculate_sum(x, y):
 return x + y

total = calculate_sum(12, 15)
print(f"The sum of 12 and 15 is: {total}")

you’ll see the following output:

The sum of 12 and 15 is: 27

You can see that the calculate_sum function calculated the sum of the

two numbers without any issue. However, if you try to compute the sum of

three numbers as follows

total = calculate_sum(12, 15, 25) # Error

you’ll see the error saying

TypeError: calculate_sum() takes 2 positional arguments but 3
were given

The error is self-explanatory: this function can handle two valid

arguments only. In this context, it is interesting to note that you can supply

a variable number of arguments to a function. However, in that case, you
need to mention your intention by supplying a star character before the
argument. Let’s see the following demonstration.

ChapTer 7 funcTions and Modules

194

�Demonstration 7.3

The following demonstration uses a function named repeat_sum that

accepts a variable number of arguments:

def repeat_sum(*args):
 current_total=0
 for num in args:
 current_total=current_total+num
 return current_total

total = repeat_sum(12, 15)
print(f"The sum of 12 and 15 is: {total}")

total = repeat_sum(20.5, 37,100)
print(f"The sum of 20.5, 37, and 100 is: {total}")

�Output

Here is the output:

The sum of 12 and 15 is: 27
The sum of 20.5, 37, and 100 is: 157.5

�Analysis

This program shows some typical characteristics. Let’s look into them:

First, you can see that I have used repeat_sum to calculate the sum of 12

and 15. Using the same function, I calculated the total of 20.5, 37, and 100. You

can see that I did not need to write the programming logic repeatedly. This
program also demonstrates the concept of code reuse using functions.

Next, I draw your attention to the following lines:

total = repeat_sum(12, 15)
print(f"The sum of 12 and 15 is: {total}")

ChapTer 7 funcTions and Modules

195

This code segment shows that the repeat_sum function took two

numbers as arguments, added them, and stored the result into another

variable called total. Later, I displayed the value inside the total variable.

It describes the fact that when you use a function, you do not need
to print the result immediately. Instead, you can store the value that
comes out from a function in another variable. This value is called the

return value of a function.

�Q&A Session

Q7.3 Can a function return multiple values?
You often see that a function returns only one value. However, using a

smart program, you can return multiple values from a function as well.

Let’s see the following demonstration.

�Demonstration 7.4

In this example, you’ll see a simple list called initial_list that contains

the numbers 1, 2, 3, 4, and 5. I also have a function called make_double().

This function takes a list as an argument and makes the elements double.

Finally, it appends the result into another list called resultant_list,

which was initially empty. Let’s see the program now:

def make_double(input_list):
 """
 It is a function that can return multiple values.
 Each element in the list will be doubled
 by this function.
 """
 for element in input_list:
 resultant_list.append(2 * element)

initial_list=[1,2,3,4,5]

ChapTer 7 funcTions and Modules

196

resultant_list=[]
print(f"The initial_list is: {initial_list}")
print("Calling the function make_double now.")
make_double(initial_list)
print(f"The resultant list is: {resultant_list}")
print(f"The initial_list is: {initial_list}")

�Output

Here is the output:

The initial_list is: [1, 2, 3, 4, 5]
Calling the function make_double now.
The resultant list is: [2, 4, 6, 8, 10]
The initial_list is: [1, 2, 3, 4, 5]

�Analysis

The content of resultant_list shows all the double values of the original

integers that I initially supplied through a list. However, you must note that

the make_double function should work on numbers only. You can easily

assume that to make the program short and simple, the input validations

are ignored here.

�Q&A Session

Q7.4 In the previous demonstration, you did not modify the initial list.
Was this intended?
Nice catch. It is safe to keep the original list as it is. If you do not want to

maintain it, you can directly update the list as well. However, this can be

risky. In this chapter, I have given you an exercise (E7.6) in which, while

creating a new list, you’ll update the original list as well.

ChapTer 7 funcTions and Modules

197

�Lambda Functions
Now let me give you a quick overview of anonymous functions (a.k.a.

lambda functions). In simple words, a lambda function is a short

inline function without a name. This function can take one or multiple

arguments but can have a single expression.

�How to Use?
A common function starts with the def keyword. A lambda function starts

with a lambda keyword. You may also note that while using a lambda

function, you do not see the return statement. This is because the value of

the expression is automatically returned. Let’s see a demonstration.

�Demonstration 7.5

The following demonstration uses two lambda functions. The first one

does not take any argument. It simply prints Hello, Reader! The next

one takes one argument and can be used to double a number. Here is a

complete program:

print("Lambda function example and uses-1.")
say_hello = lambda: print("Hello, Reader!")
say_hello()

print("Lambda function example and uses-2.")
make_double = lambda x: x * 2
print(f"Double of 10 is: {make_double(10)}")
print(f"Double of 25.35 is: {make_double(25.35)}")

�Output

Here is the output:

Lambda function example and uses-1.
Hello, Reader!

ChapTer 7 funcTions and Modules

198

Lambda function example and uses-2.
Double of 10 is: 20
Double of 25.35 is: 50.7

�Q&A Session

Q7.5 I understand that lambda functions are short. However, I'd like to
know the primary benefits of using them.
First, let me tell you that the examples shown are used only for simple

illustration purposes. However, you’d like to use lambda functions

as typical tiny throwaway functions that are often passed as function

arguments to other functions to organize other complex operations. In

fact, it is beneficial to use a lambda function rather than creating a whole

new function when you need to perform a simple task only once. It helps

you avoid unnecessary function declaration and improves readability.

Author's note: Although lambda functions are a popular choice, you must

analyze the scenario before using them. If the function logic is complex

and spans over multiple lines, I recommend that you use a docstring for an

explanation of the function usage.

Q7.6 Can you demonstrate an example where you pass a lambda
function as an argument?
In the following example, I used the built-in map function. This map

function requires a function object and any number of iterables, such

as a list or a dictionary. So here I pass a lambda function and a list as

arguments. The initial list contains some numbers. I use the lambda

function to increment each number by 100 in the list.

�Demonstration 7.6

Now go through the following demonstration:

numbers = [1, 2, 3, 4, 5]
Adds 100 to each item in the list

ChapTer 7 funcTions and Modules

199

new_numbers= list(map(lambda x: x + 100, numbers))
print(f"The original list: {numbers}")
print(f"The updated list: {new_numbers}")

�Output

Here is the output:

The original list: [1, 2, 3, 4, 5]
The updated list: [101, 102, 103, 104, 105]

�Modules
Modules are used to organize big projects. Upon investigation, you’ll know

that the Python standard library is also divided into modules. Modules

help you reuse the code as well.

For a small application, you may not need to use modules. However,

instead of putting everything in a file and making it big, it’s better to

organize your code into modules. Now the question is: what is a module?

Let’s retrieve the definition from the official documentation (see 6.

Modules – Python 3.13.3 documentation):

A module is a file containing Python definitions and state-
ments. The file name is the module name with the suffix .py
appended.

Now you understand that a module is nothing but a file that contains

some code, such as variables, functions, and classes. Once the module is

ready, you can use an import statement to access these codes from the

current file.

ChapTer 7 funcTions and Modules

https://docs.python.org/3/tutorial/modules.html#tut-modules
https://docs.python.org/3/tutorial/modules.html#tut-modules

200

�Creating a Module
Let’s begin our discussion with a simple module that contains some

Python variables and functions only. First, create a file called bootcamp_
library.py and place the following codes into it. You can see that this file

contains a list, a dictionary, and two functions:

Note  I’ve organized the codes chapter-wise in this book. for
example, I stored all programs of Chapter 7 inside a directory named
chapter07. I placed the library file in this directory as well.

A simple list
numbers = [1, 2.2, 3.3, 4, 5.5]

A simple dictionary
employees = {1: "Jack", 2: "Kate", 3: "Bob"}

def double_the_total(first, second):
 """
 This function takes two numbers, adds them
 and doubles the result
 """
 total = first + second
 return total * 2

def make_average(first, second, third=0):
 """
 This function takes three numbers and returns
 the average. The third number is optional.
 """
 total = first + second + third
 return total / 3

ChapTer 7 funcTions and Modules

201

�Importing Partial Contents
Now create another file inside the chapter07 directory and write the

following lines of code:

Note T he following code is available in ch07_d07_partial_
import.py.

from bootcamp_library import numbers, employees

print(f"Available numbers are:{numbers}")
print(f"The third number is: {numbers[2]}")
print(f"The working employees are: {employees}")

If you run this code, you see the following output:

Available numbers are:[1, 2.2, 3.3, 4, 5.5]
The third number is: 3.3
The working employees are: {1: 'Jack', 2: 'Kate', 3: 'Bob'}

You can see that I can access the list and dictionary elements from this file

(ch07_d07_partial_import), though these elements are placed in a separate

file (bootcamp_library.py). I could access them because I used the import

statement at the beginning of the file. In the same way, you can access the

function double_the_total that was defined in bootcamp_library.py.

Let us revisit and verify all these points in the following demonstration.

�Demonstration 7.7

Here is the content of ch07_d07_partial_import.py for you:

from bootcamp_library import numbers, employees, double_the_total

Using the list from the library.
print(f"Available numbers are:{numbers}")

ChapTer 7 funcTions and Modules

202

print(f"The third number is: {numbers[2]}")

Using the dictionary from the library.
print(f"The working employees are: {employees}")
print(f"The employee with ID 2 is: {employees[2]}")

Using the double_the_total function from the library now.
result = double_the_total(20, 30.5)
print(f"Two times of 20 + 30.5 is: {result}")

�Output

Here is the output:

Available numbers are:[1, 2.2, 3.3, 4, 5.5]
The third number is: 3.3
The working employees are: {1: 'Jack', 2: 'Kate', 3: 'Bob'}
The employee with ID 2 is: Kate
Two times of 20 + 30.5 is: 101.0

�Importing Entire Contents
In the previous demonstration, using the following line

from bootcamp_library import numbers, employees, double_the_total

I made numbers, employees, and the double_the_total function

available in the current program file. Already, this line of code is long. You

have seen that the bootcamp_library.py contains one more function (in fact,

it could contain many more functions and variables). Following the same

approach, if you want to access those additional contents, the line of import

statement will be longer as well. So let us see an alternative approach.

ChapTer 7 funcTions and Modules

203

Python allows you to import the entire content (except a few stuff)

from the file into your current program in an alternative way. For example,

the following line of code will import the whole content of the bootcamp_

library.py:

import bootcamp_library

However, this time, you need to prepend the name of the module

before you access the module contents to guarantee the “name safety."

Here is a sample code fragment with the inline comments for your

immediate reference:

print(f"Available numbers are: {numbers}") # Error now
print(f"Available numbers are:{bootcamp_library.numbers}") # OK

�Demonstration 7.8

Let us see an alternative version of the previous program with the key

changes in bold:

import bootcamp_library

Using the list from the library.
print(f"Available numbers are:{bootcamp_library.numbers}")
print(f"The third number is: {bootcamp_library.numbers[2]}")

Using the dictionary from the library.
print(f"The working employees are: {bootcamp_library.employees}")
pr�int(f"The employee with ID 2 is: {bootcamp_
library.employees[2]}")

Using the double_the_total function from the library now.
result = bootcamp_library.double_the_total(20, 30.5)
print(f"Two times of 20 + 30.5 is: {result}")

ChapTer 7 funcTions and Modules

204

If you run this program, you’ll see the same output that you saw in the

previous demonstration.

POINT TO REMEMBER

You can import the whole module, or you can import a particular function from

a module. I have shown you both approaches. If you import the whole module,

you need to use the syntax module_name.function_name() to access a

function from the module. The same comment applies to variables and classes

of the module. Chapter 11 includes more discussion on modules.

�Q&A Session

Q7.7 In the previous demonstration, importing the whole content was
easy. However, I needed to prepend the module name whenever I used
a function or a variable of the module. Is there any specific thought
behind this design?
A program can import multiple modules. Consider that there are two

modules and each of them has a variable named flag. Let us also assume

that you have imported both modules into your current program. Now

if you refer flag, it’s impossible to point out which flag you are referring

to. However, if you write <module_name>.flag, there will be no name

collision; it is pretty clear that you are referring to the flag variable from

that particular module. So you understand that by prepending the module

name, Python ensures the name safety.

Q7.8 Does a module contain the Python code only?
Most often, the answer is yes. However, there are exceptions. For example,

apart from the Python source code, a module can contain compiled C/C++

object files as well.

ChapTer 7 funcTions and Modules

205

Q7.9 It'll be helpful if you highlight the primary advantages of using
a module.
Read the following bullet points:

•	 You make the current program file small and focus on

the high-level logic in this file.

•	 The inner working logic is in a separate file that is not

immediately visible to the user.

•	 Once you create a module, you can reuse the code.

�Alias
Typing a big module name repeatedly is a boring activity. To avoid such a

situation, you can use an alias. You can consider the alias as a short name

for your function or module.

Let us test a function alias. In the following demonstration, I make an

alias for the function double_the_total. Taking the first character from

each of the individual words, I have chosen the alias name as dtt. This is

why you’ll see the following line of code:

from bootcamp_library import double_the_total as dtt

The remaining program is easy to understand. Go through it.

�Demonstration 7.9

Here is the complete program:

from bootcamp_library import double_the_total as dtt

Using the double_the_total function from the library now.
result = dtt(20, 30.5)
print(f"Two times of 20 + 30.5 is: {result}")

ChapTer 7 funcTions and Modules

206

�Output

Upon executing the program, you should see the following output:

Two times of 20 + 30.5 is: 101.0

You can test a module alias as well. I want you to try it yourself.

Otherwise, you can download the file ch07_d10_module_alias.py, in

which I have shown you an alternative version of Demonstration 7.8 using

module alias.

�Additional Notes
This section will draw your attention to two useful notes. Let’s see them.

�General Form of Import
In Demonstration 7.7, if you replace the following line

f�r�om bootcamp_library import numbers, employees, double_
the_total

with the following one

from bootcamp_library import *

you’ll see the same output. It is a general form of the import statement.

However, I did not use it for the following reasons:

•	 You need to be careful. If you import multiple modules

using this kind of statement, there is a possibility of

name collisions.

•	 It is difficult for readers to identify the source.

•	 This kind of import does not import objects whose

names start with an underscore.

ChapTer 7 funcTions and Modules

207

�Executing a Program as the Main Program
If you are like me, who comes from a C# or Java background, let me tell

you that Python does not automatically look for a specific function when

the program starts. So you may be surprised by seeing the output in some

specific situations. Let me give you an example.

When you download the source code, you’ll see that the code of

Demonstration 7.1 is contained in the file named ch07_d01_basic_
functions.py. Let’s try to reuse the code in another file, named ch07_
reusing_demo1.py, as follows:

import ch07_d01_basic_functions as demo1
print("Reusing the code of demonstration 7.1")
demo1.print_hello()

Upon executing this code, you will see the following output:

Calling the function that has no parameter.
Hello
Now calling the function that has two parameters.
Hello Bob! How are you?
You are now 20.
Reusing the code of demonstration 7.1
Hello

Probably, you were expected to see the last two lines of this output.

Instead, you are seeing the additional lines at the beginning. Why? They

appeared due to the execution of Demonstration 7.1 (the imported

program) as well. However, you may not intend to see the additional

output. To prevent executing the imported program unnecessarily, you may

restructure Demonstration 7.1 as follows (see the key changes in bold):

ChapTer 7 funcTions and Modules

208

There is no change in the function definitions

def main():
 print("Calling the function that has no parameter.")
 print_hello()
 print("Now calling the function that has two parameters.")
 print_details("Bob", 20)

if __name__ == "__main__":
 main()

If you execute Demonstration 7.1 now, you’ll see the same output that

you saw earlier at the beginning of the chapter. However, this time, upon

executing ch07_reusing_demo1.py, you’ll see the following output:

Reusing the code of demonstration 7.1
Hello

How did this work? Let me pick two important lines from the official

documentation (https://docs.python.org/3/library/__main__.html):

•	 When a Python module or package is imported, __
name__ is set to the module’s name. Usually, this is the

name of the Python file itself without the .py extension.

•	 However, if the module is executed in the top-level

code environment, its __name__ is set to the string

'__main__'.

In the previous code segment, I used this if statement to verify

whether, after loading the module, the interpreter assigned the __ name__

variable to the value __main__. So you can see that the if block helped me

distinguish between the following cases:

ChapTer 7 funcTions and Modules

https://docs.python.org/3/library/__main__.html

209

•	 Whether a Python file was being included in

another program

•	 Whether the Python code was being executed as its

own program

For example, when you executed Demonstration 7.1, it was executed

as the main program. However, when you executed ch07_reusing_demo1.
py, the imported file did not execute as the main program.

I hope that you have got the idea! Now onward, if needed, you
can restructure all the previous demonstrations as well. In fact, I
recommend this practice. If interested, you can learn more on this topic

from the official documentation: __main__ – Top-level code environment –

Python 3.13.3 documentation.

�Summary
This chapter covered functions and modules with different code samples.

Upon completion of this chapter, you will know the answer to the following

questions:

•	 How can you use functions in your program?

•	 How can you use the positional arguments, keyword

arguments, default values, and return values of a

function?

•	 How can you use the lambda functions? How does

it help?

•	 How can you use modules? What are the associated

benefits of using a module?

•	 How can you use a function alias or a module alias in

your program?

ChapTer 7 funcTions and Modules

https://docs.python.org/3/library/__main__.html
https://docs.python.org/3/library/__main__.html

210

�Exercise 7
It’s time for the exercises. You can assume that all these programs were

executed as the main programs.

E7.1 Can you predict the output of the following code segment?

def print_x(x):
 print(int(x)+5)

def main():
 print_x('25')

main()

E7.2 Can you predict the output of the following code segment?

def print_me(x):
 print(x+2)

def print_me(x):
 print(x+3)

print_me(5)

E7.3 Can you predict the output of the following code segment?

def make_total(type, *args):
 """
 This function can take multiple arguments.
 �However, it considers only the integers, floating-

point numbers and string data types.
 """
 if type=='strings':
 total=' '

ChapTer 7 funcTions and Modules

211

 elif type == 'numbers':
 total = 0.0
 # Traversing the arguments
 for item in args:
 total= total + item
 return total

result = make_total("numbers",2.5,3)
print(result)
result = make_total("strings","2.75","3")
print(result)

E7.4 Can you predict the output of the following code segment?

x = 10
print(f"x = {x}")

def print_me(x):
 x += 2
 print(f"Now x is: {x}")

print_me(x)
print(f"Here x is: {x}")

E7.5 Can you predict the output of the following code segment?

def print_me(x):
 print(x)

def print_me(x,y):
 print(x+y)

print_me(5)
print_me(5,7)

ChapTer 7 funcTions and Modules

212

E7.6 Demonstration 7.4 doubled each number in the given list and
placed those numbers into a new list. However, you did not alter the
original list. Now, I want you to modify the program where you remove

the elements from the initial list, make them double, and place them
into a new list. So, in the end, when you examine the original list, you
should see that it is empty. Can you write the program?

E7.7 Suppose you have a list of numbers. Using a lambda function, can
you increase each number by 5%?

�Keys to Exercise 7
Here is a sample solution set.

�E7.1

You’ll see the following output:

30

Explanation: This is straightforward. The main function invoked the other

function, print_x, which transforms the input string ‘25’ to an integer and

adds 5 to it.

�E7.2

You’ll see the following output:

8

Explanation: Python does not show you any error if you use the same

name for two functions, but it calls the latest one. In this exercise, Python

assumes that you redeclared the print_me function, in which the function

increments the value of x by 3. This is why print_me(5) results in 5
+ 3 = 8.

ChapTer 7 funcTions and Modules

213

�E7.3

Here is the output:

5.5
2.753

Explanation: This example gives you an idea about how a function can

behave differently. If you are familiar with method overloading in Java or

C#, you are already familiar with this kind of behavior. Python does not

support method overloading by default. However, there are different ways

to achieve this concept in Python. This example demonstrates one of those

approaches (though it is not the most efficient).

�E7.4

Here is the output:

x = 10
Now x is: 12
Here x is: 10

Explanation: The initial value of x was 10. Then I called the print_me
function, which incremented the value to 12. However, this change

happened inside the function body. It means that I worked on a local copy

of x. So, when I came out from the function body, I again got the value 10

for x. In other words, I lost the value of a local variable between function

invocations.

You can use the same local variable for different functions too. In

simple terms, the memory of a local variable is used when it is in the

scope. When you leave the scope, you free the memory.

Sometimes, you may want to a have variable that does not die before

your program ends. In such a case, you can use a global variable. Since

global variables are not for any specific functions, you place them outside

ChapTer 7 funcTions and Modules

214

of all functions. In Python, global is a reserved word. To illustrate, let me

modify E7.4 as follows (see the presence of the global keyword inside the

print_me function that does not accept any argument now):

Note  I placed the following code in ch07_use_of_global_variable.
py, which you can download from the Apress website.

print("Example of a global variable.")
x = 10
print(f"x = {x}")

def print_me():
 global x
 x += 2
 print(f"Now x is: {x}")

print_me()
print(f"Here x is: {x}")

Now you can get the following output:

Example of a global variable.
x=10
Now x=12
Here x=12

�E7.5

Upon executing the program, you’ll see the following error:

TypeError: print_me() missing 1 required positional
argument: 'y'

ChapTer 7 funcTions and Modules

215

Explanation: Exercise E7.2 explained that if you have multiple

functions with the same name, Python considers the latest one. So, in

this case, you were supposed to supply two arguments because the latest

definition of the print_me function had two parameters.

�E7.6

Here is a sample program:

def transform_lists():
 """
 It is a function that can return multiple values.
 Each element in the initial_list will be doubled
 by this function.
 """
 global initial_list
 global resultant_list
 # First, reversing the list before calling pop()
 initial_list.reverse()
 #print(f"The list becomes:{input_list}")
 while initial_list:
 for element in initial_list:
 element = initial_list.pop()
 # print(element)
 resultant_list.append(2 * element)

initial_list = [1,2,3,4,5]
resultant_list=[]
print(f"The initial_list is: {initial_list}")
print("Calling the function transform_lists now.")
transform_lists()
print(f"The initial_list is: {initial_list}")
print(f"The resultant list is: {resultant_list}")

ChapTer 7 funcTions and Modules

216

Here is the output:

The initial_list is: [1, 2, 3, 4, 5]
Calling the function transform_lists now.
The initial_list is: []
The resultant list is: [2, 4, 6, 8, 10]

�E7.7

initial_numbers= [100, 200, 300, 400, 500]
print(f"The original numbers are {initial_numbers}")
Incrementing each item in the list by 5%
new_numbers = list(map(lambda x: x * 1.05, initial_numbers))
print(f"The updated numbers are {new_numbers}")

Here is the output:

The original numbers are [100, 200, 300, 400, 500]
The updated numbers are [105.0, 210.0, 315.0, 420.0, 525.0]

�Case Study
Let’s make solutions for the following case studies.

�CS7.1 Problem Statement
This time, I want you to make a calculator. Using the calculator, you

should be able to perform the basic operations: addition, subtraction,

multiplication, and division. Here, I provide you a sample output when the

user supplies the valid inputs:

=========================
This is a simple calculator.
It supports the following operations:

ChapTer 7 funcTions and Modules

217

i) Addition
ii) Subtraction
iii) Multiplication and
iv) Division.
=========================
Enter the first number: 12.5
Enter the next number: 3
Enter an operator(+,-,*,/): *
The final result is:37.5

Author’s comment:
Chapter 8 can help you evaluate all the valid inputs. In this project, you can

add one simple validation that checks whether a user supplies an invalid

operator. In this case, your application should inform the user about this

error. Here is a sample output for this negative scenario:

=========================
This is a simple calculator.
It supports the following operations:
i) Addition
ii) Subtraction
iii) Multiplication and
iv) Division.
=========================
Enter the first number: 2
Enter the next number: 5
Enter an operator(+,-,*,/): >
Invalid operator. Cannot compute the result.

ChapTer 7 funcTions and Modules

218

�CS7.2 Problem Statement
You can organize the CS6.2 implementation in a better way. Your guess is

correct. I want you to use functions in your implementation.

�Sample Implementations
Let’s see the sample implementations for the case studies.

�CS7.1 Implementation
I use many small functions in this implementation. I convert a valid

operand into a float before I calculate the result. So you’ll find codes like

usr_input1 = input("Enter first number:")
first_number = float(usr_input1)

I store valid operators in a list. Here is the code:

valid_operators = ["+", "-", "*", "/"]

If the operator is not included in this list, I report an error. I use an

if-else chain to do this task:

if usr_opr in valid_operators:
 compute(first_number, usr_opr, second_number)
else:
 print("Invalid operator. Cannot compute the result.")

The remaining code is easy to understand. Refer to the supporting

comments if you need them. Here is the complete implementation:

print("=" * 25)
print("This is a simple calculator.")
print("It supports the following operations:")

ChapTer 7 funcTions and Modules

219

print("i) Addition"
 "\nii) Subtraction"
 "\niii) Multiplication and "
 "\niv) Division.")
print("=" * 25)
valid_operators = ["+", "-", "*", "/"]

def add_numbers(num1, num2):
 """
 Adds the numbers.
 """
 return num1 + num2

def subtract_numbers(num1, num2):
 """
 Subtracts the numbers.
 """
 return num1 - num2

def multiply_numbers(num1, num2):
 """
 Multiplies the numbers.
 """
 return num1 * num2

def divide_numbers(num1, num2):
 """
 Divide num1 by num2.
 """
 return num1 / num2

ChapTer 7 funcTions and Modules

220

def compute(num1, operator, num2):
 """
 This function computes the final result.
 """
 result = 0 # the default value

 if operator == '+':
 result = add_numbers(num1,num2)
 elif operator == '-':
 result = subtract_numbers(num1,num2)
 elif operator == '*':
 result = multiply_numbers(num1,num2)
 else:
 result = divide_numbers(num1, num2)
 print(f"The final result is:{result}")

def main():
 """
 This is the top-level function.
 It calls the compute() function.
 """
 usr_input1 = input("Enter the first number:")
 first_number = float(usr_input1)
 usr_input2 = input("Enter the next number:")
 second_number = float(usr_input2)
 usr_opr = input("Enter an operator(+,-,*,/): ")
 if usr_opr in valid_operators:
 compute(first_number, usr_opr, second_number)
 else:
 print("Invalid operator. Cannot compute the result.")

if __name__ == "__main__":
 main()

ChapTer 7 funcTions and Modules

221

�Possible Improvements

To improve the implementation, you can try to validate all the user inputs

when you learn the exception-handling mechanism. You’ll see a sample

implementation at the end of Chapter 8.

To improve the project, you can support more operations in your

calculator.

�CS7.2 Implementation
Here is an improved and organized solution for CS6.2 using functions:

The initial part is not shown to avoid repetitions.
i.e. there is no change in the
question1, question2, question3 and question_bank variables

def run_test(questions):
 """
 This function takes the question bank as a parameter.
 You can supply the question bank with answer keys
 in this function.
 """
 print("Welcome to the MCQ test.")
 print("=" * 25)
 score = 0 # initial value
 for key in questions:
 print(key)
 user_input = input("Type your answer(a/b/c/d):")
 if user_input == question_bank[key]:
 score += 1
 print(f"\nYour Score:{score} out of {len(questions)}")

if __name__ == "__main__":
 run_test(question_bank)

ChapTer 7 funcTions and Modules

222

Note  You can download the file ch07_cs02.py to see the complete
program.

�Possible Improvements

To improve the implementation, you can validate all the user inputs when

you learn the exception-handling mechanism in Chapter 8.

ChapTer 7 funcTions and Modules

223© Vaskaran Sarcar 2025
V. Sarcar, Python Bootcamp, https://doi.org/10.1007/979-8-8688-1516-4_8

CHAPTER 8

Exception
Management
Coding is fun. You face continuous challenges and encounter sudden

surprises during your program execution. Some problems are visible

before executing the program. For example, if you write print("Hello),

the PyCharm IDE will immediately help you discover the syntax error

by highlighting that you're missing the closing quotes. This type of error

is common but sometimes hard to find with human eyes at the very

beginning. So the parser or an IDE like PyCharm can help you in these

situations. Finding this kind of error is easy.

There is another category of problems that you find during the

execution of a program. Here are some typical examples:

•	 Dividing an integer by 0.

•	 Trying to convert an invalid string to an integer.

•	 An expected file is not found, or it doesn’t exist at all,

and so forth.

Programmers term these unusual situations as exceptions. Handling

these exceptions is a challenging activity. The core concept is not new.

In fact, it has been around for some time. Python has its own set of

exceptions. These are available for your immediate use. You can also write

a custom exception to handle a specific situation. This chapter discusses

the topic.

https://doi.org/10.1007/979-8-8688-1516-4_8#DOI

224

�General Philosophy
You can define an exception as an event that breaks the normal execution

flow of the program during the runtime of the program. So the primary

purpose of exception handling is to handle those errors. However, consider

the case when you have a big application with many small functions. If you

need to consider all possible errors in every code segment, the task can be

boring as well as repetitive.

Let me give you a simple example. Suppose your application computes

something, and you periodically store the result on a disk. These

operations can be interrupted in various ways. Here are some possibilities:

•	 A user provides one or more invalid inputs.

•	 At some stage, you encounter something unwanted, say

a division by zero operation.

•	 The disk does not have enough space.

•	 The disk is not fully functional. So you cannot save

the result.

You understand that handling these unwanted situations (a.k.a.

exceptions) is important. Otherwise, any of these unwanted situations is

sufficient to break the normal flow of the execution. You'll see an example

shortly in Demonstration 8.1.

To secure an application, let’s assume that you check all possible error

conditions in advance. Under this method, the error-detecting and error-

handling code becomes a significant portion of the entire program. This

code can be repetitive and scattered as well. So it is not desirable. Exception-

handling mechanisms can act as a bridge between these possibilities.

To illustrate, for the discussed example, at a high level, you can

consider two imaginable types of errors – one to detect a computational

Chapter 8 Exception Management

225

error and another one to detect disk errors. Now, you use two handlers to

handle these situations. Then, you organize your code in such a way that if

any of these errors occur, you refer to the corresponding error handler.

POINT TO REMEMBER

Usually, the problems that can cause an exception are different. For example,

an arithmetic problem such as division by 0 differs completely from a memory

shortage problem in a disk. Therefore, you need to use specific handlers to

manage the corresponding types of problems.

�Common Terms
Python creates some special objects called exceptions to manage runtime

errors. Before diving into Python-specific terms, let me use some general

terms that you'll often hear while discussing exceptions.

We say that a particular block of code raises (or throws) an exception.

We call the act of responding to an exception catching an exception. We

refer to the code that handles the exception as an exception handler. You

can see multiple exception handlers in a program. They help you catch

different types of exceptions in the code. It is also possible that different

handlers handle the same exception, but in general, they do not live in the

same place.

If you have the correct exception handlers, your program continues

to run. Otherwise, the program may halt and die prematurely. In these

cases, follow the traceback, which includes a detailed report about the

situation.

Chapter 8 Exception Management

226

�Exception Handling in Python
Python generates an exception object with a raise statement. Once it

is raised, Python follows the common exception-handling mechanism,

i.e., instead of proceeding with the next statement, the current calling

chain searches for the handler that can handle the situation. If it finds

such a handler, it can access the exception object for more information.

Otherwise, the program aborts with an error message.

Python’s exception-handling philosophy differs slightly from some

traditional programming languages, such as C. To illustrate, developers

may try to check all possible errors before performing a critical action to

avoid runtime exceptions. We call this style look before you leap (LBYL).

Python likes to deal with exceptions after they occur. Yes, it is risky. But

they encourage you to write code, which is less cumbersome and easily

readable. We call this approach Easier to Ask for Forgiveness than
Permission (EAFP).

It is often easier to ask for forgiveness than to ask for permission.

— Grace Hopper, American computer scientist

�Hierarchical Structure
Python has its own set of exceptions. It has a hierarchical structure. At the

time of this writing, Python 3.13 has just been released. So you can get

the latest list from the link http://bit.ly/python-exceptions. Instead

of filling the pages with the complete list of exceptions, I prefer to show a

subset of it to give you an idea:

BaseException
 SystemExit
 ...

Chapter 8 Exception Management

http://bit.ly/python-exceptions

227

 Exception
 ArithmeticError
 FloatingPointError
 ZeroDivisionError
 AssertionError
 ...
 ValueError
 UnicodeError
 ...
 ...

Notice the indentation. It is deliberate. Each exception type is a class.

These classes follow the inheritance hierarchy. The hierarchical structure

helps us to determine the parent–child relationship. Class, objects, and

inheritance make the heart of object-oriented programming (OOP). You

may be unfamiliar with OOP. Do not worry, it’s okay. I have included a

discussion about them in the last part of the book.

POINT TO REMEMBER

Python’s exception-handling mechanism follows the object-oriented

programming (OOP) style. Chapters 10 and 11 in this book discuss the

OOP. You do not need to learn the OOP in detail to understand the material in

this chapter.

Following the list, it’s enough for you to know that a

ZeroDivisionError is one type of ArithmeticError, which is again

one type of Exception. But SystemExit is not an Exception type; it is

a BaseException type. You can get the full meaning of each type from

the Python documentation. You can become familiar with them as you

continue reading this chapter and writing programs.

Chapter 8 Exception Management

228

It can be easier for you to relate this hierarchy with some real-world

examples. For example, you can think of a vehicle as the base class for both

buses and trains. So, when we talk about a bus or train, we know that a bus

is nothing but a specific type of vehicle. Similarly, a train is nothing but a

specific type of vehicle. Similarly, the ZeroDivisionError is nothing but a

specific type of ArithmeticError.

�Demonstration 8.1

Let us examine the case when you do not handle an exceptional situation.

Instead, you leave the decision to Python to manage the error.

The following program expects you to supply two valid integers. Then,

it displays the result of the division. Everything seems to be fine at the

beginning because you do not see any syntax errors. Let's see the program:

a = input("Enter the dividend: ")
b = input("Enter the divisor: ")
c = int(a)/int(b)
print(f"The result of a/b is {c}")
print("The program completes successfully.")

�Output

Now, analyze the program against some valid and invalid inputs. If you

supply 7 and 2, everything seems to work fine. Here is the output.

Enter the dividend: 7
Enter the divisor: 2
The result of a/b is 3.5
The program completes successfully.

Chapter 8 Exception Management

229

Now, analyze the program with some different inputs. If you supply

7 as dividend and 0 as divisor, the application raises a runtime error as

follows:

Enter the dividend: 7
Enter the divisor: 0
Traceback (most recent call last):
 File "E:\MyPrograms\PythonBootcamp\chapter8\ch08_d01_
exception_demo.py", line 3, in <module>
 c = int(a)/int(b)
        ~~~~~~^~~~~~~
ZeroDivisionError: division by zero

Notice that Python generates a traceback for you. Following this report, 

you can identify that in line 3, you have encountered the problem. It is 

because there is an attempt of a division by zero. Once this error is raised, 

Python does not execute the next statement anymore. So you do not see 

the line “The program completes successfully.” in this output. As shown 

in the output, Python names this kind of error as ZeroDivisionError.

Now, analyze the program again when you pass an invalid dividend. 
Let's supply abc and 2. Since you cannot convert abc to a valid integer, the 

application produces a different runtime error as follows:

Enter the dividend: abc
Enter the divisor: 2
Traceback (most recent call last):
  File "E:\MyPrograms\PythonBootcamp\chapter8\ch08_d01_
exception_demo.py", line 3, in <module>
    c = int(a)/int(b)
        ~~~^^^
ValueError: invalid literal for int() with base 10: 'abc'

Chapter 8 Exception Management

230

Notice that this time, you see a ValueError. Again, once this error is

raised, Python does not execute the next statement anymore. So you do

not see the line “The program completes successfully.” in this output.

�Q&A Session

Q8.1 Why do we see exceptions?
This kind of problem may occur due to various reasons, such as

implementing an incorrect program logic or bypassing a typical loophole

in the code.

Q8.2 Why do you believe that exception handling is a challenging
activity?
Since you do not see the syntax (or parsing) errors, everything appears to

be fine. Still, you find problems during the program execution.

Author’s note: Sometimes, you do not see syntax errors or exceptions.

However, the program may still produce an incorrect output. This type

of error is known as a semantic error. Identifying semantic errors can be

tricky. In this case, to figure out the problem, you need to work backward

by looking at the output of the program. Examples of semantic errors

include passing a numeric variable where a character value was intended

or encountering a race condition. Some developers also treat this type of

error as exceptions.

Q8.3 Can built-in functions raise exceptions?
Yes. For example, see the following code:

>>> mylist=[1,2,3,4]
>>> mylist
[1, 2, 3, 4]
>>> mylist[5]
Traceback (most recent call last):
 File "<python-input-2>", line 1, in <module>

Chapter 8 Exception Management

231

 mylist[5]
    ~~~~~~^^^
IndexError: list index out of range

Q8.4 Is it possible to force an exception to occur?
Yes, you can use the raise statement to force a specified exception to 

occur. For example, the following code segment raises an exception if the 

sum of two variables (x and y) is greater than 5:

x,y = 2,4
if x+y > 5:
   raise ArithmeticError("The total is greater than 5")
else:
   print(f"x+y is {x+y}")

Author's note: You can download ch08_raising_exception.py from the 

Apress website to verify this program.

�Key Points
In this section, I highlight some key points about the exception-handling 

mechanism. You can revisit these points as per your need:

•	 An exception object is created when a runtime error 

occurs. It is used to describe an erroneous situation.

•	 Exceptions are raised during the program execution. 

Whenever such a situation occurs, in programming 

terminology, you say that the application has raised (or 

thrown) an exception.

•	 You can guard an exception using a try-except block. 

You place the code that may raise an exception inside 

a try block. You handle an exceptional situation inside 

an except block.

Chapter 8  Exception Management



232

•	 Demonstration 8.1 shows that the same program can 

generate a variety of exceptions. So you may notice the 

presence of multiple except blocks with a try block in 

a program.

•	 If the codes inside the try block execute without an 

exception, the program control bypasses the except 

block(s).

•	 When a particular except block handles an exception, 

we often say that the except block has caught the 

exception.

•	 You need to be prepared for all possible exceptions. 

For example, let's say that in a program, you may have 

a code segment to handle the ZeroDivisionError, but 

you do not have an except block to handle ValueError. 

In this case, if the ValueError occurs inside the try 

block, your program ends prematurely.

•	 When an exception occurs, Python shows you an 

error report. You can use this report to know the error 

location and the details of it.

•	 The try...except statement can have an optional 

else clause. If this is present, it must follow all except 

clauses. Typically, it is useful to make a concise 

try block.

•	 However, if you are coming from a C# or Java 

background, there is good news for you! You can have a 

finally block as well to perform cleanup operations.

Do not worry! We'll examine all these possibilities.

Chapter 8  Exception Management



233

�Q&A Session

Q8.5 How does the else block help me in exception handling?
As said before, it helps you make a concise try block. Shortly, you'll see 

an implementation. For now, you can refer to the official documentation 

(see 8. Handling Exceptions – Python 3.13.3 documentation) that states the 

following:

The use of the else clause is better than adding additional code 
to the try clause because it avoids accidentally catching an 
exception that wasn’t raised by the code being protected by the 
try ... except statement.

�Using try-catch-finally
In the upcoming demonstration, you'll see the use of try, except, and 

finally blocks. This program is a modified version of Demonstration 

8.1. So it expects you to supply two valid integers before it displays the 

result of the division. Again, we'll discuss the program by supplying valid 

and invalid inputs.

�Demonstration 8.2

Here is the complete program for you:

print("The following program can handle two different errors.")
a = input("Enter the dividend: ")
b = input("Enter the divisor: ")

try:
    result = int(a) / int(b)
    print(f"The result of the division is: {result}")
except ZeroDivisionError as e:
    print("Invalid input! Your divisor becomes zero!")
    print(f"Error details: {e}")

Chapter 8  Exception Management

https://docs.python.org/3/tutorial/errors.html


234

except ValueError as e:
    print("Invalid input! Provide a correct input next time!")
    print(f"Error details: {e}")
finally:
    print("The program completes successfully.")

�Output

If you supply valid inputs such as 7 and 2, everything seems to work fine. 

Here is the output:

The following program can handle two different errors.
Enter the dividend: 7
Enter the divisor: 2
The result of the division is: 3.5
The program completes successfully.

Let's supply 7 and 0 now. Since the divisor is 0 before the division 

operation, the application raises an exception (ZeroDivisionError), but 

you have handled the situation using an except block. Here is the output:

The following program can handle two different errors.
Enter the dividend: 7
Enter the divisor: 0
Invalid input! Your divisor becomes zero!
Error details: division by zero
The program completes successfully.

Notice that this time, the program ends gracefully. You also see the 

line “The program completes successfully.” in this output. It is because 
this line was supposed to be executed under all situations. This is why 

the finally block typically contains the cleanup operations, application 

closing messages, etc.

Chapter 8  Exception Management



235

POINT TO NOTE

You may also note that instead of showing a detailed error report, you can 

use the except block to print some custom messages. When you do this, you 

provide better security to your application. It is because you do not disclose 

important details like your program file name, file location, etc. A skilled 

hacker can do illegal activities using this information.

Now analyze the program again when you pass an invalid divisor, 
say 'abc'. This causes the ValueError to be raised. However, the situation 

is managed in another except block. Here is the output:

The following program can handle two different errors.
Enter the dividend: 5
Enter the divisor: abc
Invalid input! Provide a correct input next time!
Error details: invalid literal for int() with base 10: 'abc'
The program completes successfully.

Once again, since the program ended gracefully, so you can see the 

line “The program completes successfully.” in this output. Again, you 

have done an excellent job to prevent the skilled attacker by not disclosing 

the important details of the file.

�Q&A Session

Q8.6 I understand that you are hiding the error detail using the except 
block. However, in this demonstration, if I'd like to see the traceback, 
how can I see that?
In this demonstration, if you do not handle the exceptional situation, 

you'll see the traceback. For example, if you do not handle the 

ZeroDivisionError and you pass the divisor 0, you'll see the traceback. 

Chapter 8  Exception Management



236

However, while using the except block, you can display the same. For 

example, let's import the traceback module and modify the except block 

as follows:

except ZeroDivisionError as e:
    print("Invalid input! Your divisor becomes zero!")
    print(f"Error details: {e}")
    print(traceback.print_exc())

This time, if you pass 0 as a divisor, you can see the traceback again. 

Here is a sample:

The following program can handle two different errors.
Enter the dividend: 7
Enter the divisor: 0
Invalid input! Your divisor becomes zero!
Error details: division by zero
Traceback (most recent call last):
  File "E:\MyPrograms\PythonBootcamp\chapter8\ch08_d02_
modified_demo1.py", line
   6, in <module>
    result = int(a) / int(b)
             ~~~~~~~^~~~~~~~
ZeroDivisionError: division by zero
None
The program completes successfully.

�Using the else Block
Notice the program logic in the previous program and consider the

division operation again. You understand that if a runtime error occurs

during the division operation, the program does not print the result. This

logic is correct, but you can beautify your code. It is a better idea to put the

Chapter 8 Exception Management

237

result of the division in an else block. It can show whether the code in the

try block can pass without an issue. As a next step, the program control

enters the else block. So, in this example, I’ve moved the line print(f"The
result of the division is: {result}") into the else block.

�Demonstration 8.3

Here is the complete demonstration with the key change in bold:

print("The following program can handle two different errors.")
a = input("Enter the dividend: ")
b = input("Enter the divisor: ")
try:
 result = int(a) / int(b)
except ZeroDivisionError as e:
 print("Invalid input! Your divisor becomes zero!")
 print(f"Error details: {e}")
except ValueError as e:
 print("Invalid input! Provide a correct input next time!")
 print(f"Error details: {e}")
else:
 print(f"The result of the division is: {result}")
finally:
 print("The program completes successfully.")

�Output

If you test this modified program with different inputs (that were used in

Demonstrations 8.2), you'll notice the same behavior.

Chapter 8 Exception Management

238

POINTS TO REMEMBER

When you assume that a particular segment of code may raise a runtime

error or exception, you place that segment of code into a try block. To handle

a specific runtime error, you place an appropriate except block to handle the

error, print user-friendly messages, and suppress important details to prevent

malicious attacks. Finally, if there are codes that depend on the successful

completion of the try block, you place them into the else block. In short,

keeping this information in mind, you can design a try-except-else block.

�Q&A Session

Q8.7 How does the else block differ from the finally block?
The else block executes if the try block does not raise any exception.

You’d like to use this block to separate the “successful execution” logic

from the “potential error” logic and the “cleanup” logic. On the contrary,

the finally block always executes. So you put the cleanup codes in the

finally block.

�Using the pass Statement
If needed, you can hide the exception details and allow the program to

fail silently. You may do this to give the user an impression that everything

is fine.

To illustrate, the upcoming program calculates the aggregate of two

valid numbers. If the user passes any invalid input, you catch the exception

but silently skip the exception details by using the pass statement.

Chapter 8 Exception Management

239

�Demonstration 8.4

The following demonstration describes such a scenario:

total = 0 #default value
try:
 a = float(first_input)
 b = float(second_input)
except ValueError as e:
 pass
else:
 total = a + b
 print(f"The sum of numbers: {total}")
finally:
 print("The program completes successfully.")

�Output

If you supply valid inputs such as 25.5 and 12, everything seems to work

fine. Here is the output:

This program prints the sum of two valid numbers.
Enter a valid number: 25.5
Enter another valid number: 12
The sum of numbers: 37.5
The program completes successfully.

Let's supply 27 and abc now. Here is the output:

This program prints the sum of two valid numbers.
Enter a valid number: 27
Enter another valid number: abc
The program completes successfully.

Chapter 8 Exception Management

240

�Analysis

Notice that the previous output does not display the total. The program

logic tells us that if everything goes well inside the try block, you

calculate the aggregate of the valid numbers inside the else block. But

it was NOT the case here because you supplied a string, abc, which

cannot be converted into a valid floating-point number.

�Arranging Multiple except Blocks
In a program, you can expect different errors, and you guard them with

appropriate except blocks. But you may not anticipate everything in

advance. So you may want to have a general except block that can handle

remaining exceptional situations. For example, in Demonstration 8.2, you

handled both ZeroDivisionError and ValueError, but what happens

if a different exception occurs in your program? In such a case, you can

use a general except block to catch the remaining errors. Here is such an

example where I catch all built-in non-system-exiting exceptions after all

the anticipated except blocks as follows:

try:
 # Some code
except ZeroDivisionError as e:
 print(f"Error details:{e}")
except ValueError as e:
 print(f"Error details:{e}")
except Exception as e:
 print(f"Error details:{e}")

This arrangement is important. If you place a more generic or broader

except block before a specific except block, your code will NOT reach the

specific except block. Just like if you already recognize a bus, you do not

need to test whether it is a vehicle.

Chapter 8 Exception Management

241

�Q&A Session

Q8.8 "If you place a more generic or broader except block before a
specific except block, your code will NOT reach the specific except
block." Can you give an example?
Let's execute the following program where the arrangement of the except

blocks is not proper:

print("The following program can handle the non-system-exiting
exceptions.")
a = input("Enter the dividend: ")
b = input("Enter the divisor: ")
try:
 result = int(a) / int(b)
The incorrect arrangement of the except blocks
except Exception as e:
 �p�r�int(f"An unexpected error has occurred. Error

details: {e}")
except ZeroDivisionError as e:
 print("Invalid input! Your divisor becomes zero!")
 print(f"Error details: {e}")
except ValueError as e:
 print("Invalid input! Provide a correct input next time!")
 print(f"Error details: {e}")
except Exception as e:
print(f"An unexpected error has occurred. Error details: {e}")
else:
 print(f"The result of the division is: {result}")
finally:
 print("The program completes successfully.")

Chapter 8 Exception Management

242

Let's run the program against inputs 7 and 0. Here is the output:

The following program can handle the non-system-exiting
exceptions.
Enter the dividend: 7
Enter the divisor: 0
An unexpected error has occurred. Error details: division by zero
The program completes successfully.

Let's execute the program again, but this time, you supply 5 and abc.

Here is the output:

The following program can handle the non-system-exiting exceptions.
Enter the dividend: 5
Enter the divisor: abc
An� unexpected error has occurred. Error details: invalid
literal for int() with base 10: 'abc'

The program completes successfully.

In both cases, the program terminates gracefully. However, instead

of seeing specific error messages like "Invalid input! Your divisor
becomes zero!" or "Invalid input! Provide a correct input next
time!", you see a generic message "An unexpected error has occurred
..." in the output. It is because the top-level except block was able to handle

both kinds of errors. So, if you want to see those specific messages, you

need to place the except blocks properly. For example, here is a correct

arrangement:

except ZeroDivisionError as e:
 print("Invalid input! Your divisor becomes zero!")
 print(f"Error details: {e}")

Chapter 8 Exception Management

243

except ValueError as e:
 print("Invalid input! Provide a correct input next time!")
 print(f"Error details: {e}")
except Exception as e:
 print(f"An unexpected error has occurred. Error details: {e}")

Author's note: You can download the file ch08_arranging_multiple_
except_blocks.py from the Apress website to see the complete program.

POINTS TO REMEMBER

When you deal with multiple except blocks, you need to place more specific

except blocks first. In other words, you should place the except blocks from

the most specific to the most general.

Q8.9 Can I create a custom exception?
Yes. Since I have not discussed classes and inheritance yet, I did not

include this discussion yet. The online link https://docs.python.org/3/
tutorial/errors.html#user-defined-exceptions provides some useful

guidelines for using the user-defined exceptions. Let me include the

important ones:

•	 You should derive your exception class from the

Exception class.

•	 You should keep it simple.

•	 While naming the exception, you should use the suffix

"Error," similar to built-in exceptions.

To illustrate, let me demonstrate a simple program that is as follows

(the program should be super easy for you once you understand

inheritance that is discussed in Chapter 11).

Chapter 8 Exception Management

https://docs.python.org/3/tutorial/errors.html#user-defined-exceptions
https://docs.python.org/3/tutorial/errors.html#user-defined-exceptions

244

�Demonstration 8.5

The following program asks for user input. To make the example short

and simple, I assume that the user needs to supply an integer that is less

than or equal to 100. Otherwise, the program raises a custom exception

called GreaterThan100Error. In the previous chapter, you learned how

to execute a program as the main program. While implementing the

program, let’s revise that concept one more time as well. Here is the

complete demonstration.

The following example uses a custom exception
class GreaterThan100Error(Exception):
 """ This is a custom exception."""
 pass

def test_custom_exception():
 try:
 usr_input = float(input("Enter a number below 100: "))
 if usr_input >= 100:
 �r�a�ise GreaterThan100Error(f"The input {usr_input}

is NOT less than 100.")
 except GreaterThan100Error as e:
 print(f"The custom exception is raised:{e}")
 except ValueError as e:
 print(f"Error Details:{e}")
 else:
 print(f"Well done. You have entered: {usr_input}")

if __name__=="__main__":
 test_custom_exception()

Chapter 8 Exception Management

245

�Output

Here is a sample output when the user supplies a number that is less than 100:

Enter a number below 100: 75.7
Well done. You have entered: 75.7

Here is another sample output. This time user supplies an integer that

is greater than 100:

Enter a number below 100: 721
T�h�e custom exception is raised: The input 721.0 is NOT less
than 100.

Here is another sample output. This time the user did not supply

a number:

Enter a number below 100: abc
Error Details: could not convert string to float: 'abc'

I hope that you have enjoyed this chapter. Now it’s time for exercises

and projects.

�Summary
This chapter discussed exception handling in detail. In brief, it answered

the following questions:

•	 How can you handle exceptions in Python

programming?

•	 How can you use the try, except, and finally blocks?

•	 How can an else block help you to write a concise

try block?

•	 How can you use a custom exception in your code?

Chapter 8 Exception Management

246

•	 How do you use the pass statement?

•	 How should you arrange multiple except blocks?

�Exercise 8
E8.1 Predict the output when you execute the following code:

try:
 result = 15/0
except ArithmeticError:
 print("Caught the ArithmeticError.Your divisor is zero.")
except ZeroDivisionError:
 print("Caught ZeroDivisionError.The divisor is zero.")

E8.2 Can you execute the following program?

print("The following program can handle two different errors.")
a = input("Enter the dividend: ")
b = input("Enter the divisor: ")
try:
 result = int(a) / int(b)
except (ZeroDivisionError,ValueError) as e:
 print(f"Error details: {e}")
else:
 print(f"The result of the division is: {result}")
finally:
 print("The program completes successfully.")

E8.3 Predict the output of the following program:

try:
 raise BaseException("BaseException raised.")
except Exception as e:
 print("Caught the BaseException")

Chapter 8 Exception Management

247

E8.4 Write a program that asks you to keep entering valid integers.
However, the program should continue, even if the user provides an
invalid input. The user can type "q" to quit the program. The program
must evaluate every input and display the result as well.

�Keys to Exercise 8
Here is a sample solution set.

�E8.1

You'll see the following output:

Caught the ArithmeticError.Your divisor is zero.

Explanation: The ArithmeticError is a built-in exception. It can handle

the exceptions when the code raises an arithmetic error. The built-in

exceptions ZeroDivisionError, OverflowError, and FloatingPointError

are the subcategories of the ArithmeticError.
Since I placed ArithmeticError before ZeroDivisionError, this

program caught the error inside the ArithmeticError block. If you

interchange these except blocks, you can see a different output:

Caught ZeroDivisionError.The divisor is zero.

I have shown you how to arrange multiple except blocks in your code.

You can read that section again.

�E8.2

Yes, it's a valid program that uses a single except block to handle both the

ZeroDivisionError and ValueError.

Chapter 8 Exception Management

https://docs.python.org/3/library/exceptions.html#ZeroDivisionError
https://docs.python.org/3/library/exceptions.html#FloatingPointError

248

�E8.3

The except block cannot catch the exception. It is because the

BaseException is the parent class of Exception. Here is a sample output:

Traceback (most recent call last):
 File "E:\MyPrograms\PythonBootcamp\chapter8\ch08_e03.py",
line 2, in <module>
 raise BaseException("BaseException raised.")
BaseException: BaseException raised.

�E8.4

Here is a sample program:

print("Exercise-8.4")

def test_input():
 flag = True
 while flag:
 �user_input = input("Keep entering integers. (Type q to

quit):")
 if user_input == 'q':
 break
 try:
 display_input = int(user_input)
 except Exception as e:
 print(f"Invalid input: {e}")
 else:
 print(f"Correct. You entered:{display_input}")
 # This statement is placed outside the while loop
 print("End of the exercise.")
if __name__=="__main__":
 test_input()

Chapter 8 Exception Management

249

Here is a sample output:

Exercise-8.4
Keep entering integers. (Type q to quit):3
Correct. You entered:3
Keep entering integers. (Type q to quit):5.7
Invalid input: invalid literal for int() with base 10: '5.7'
Keep entering integers. (Type q to quit):abc
Invalid input: invalid literal for int() with base 10: 'abc'
Keep entering integers. (Type q to quit):105
Correct. You entered:105
Keep entering integers. (Type q to quit):q
End of the exercise.

�Case Study
It's time for the case study. Instead of trying to implement a new
case study, I want you to update all the previous implementations,
considering exception-handling mechanisms. To begin with, you can try

implementing the following.

�CS8.1 Problem Statement
In CS7.1, you made a calculator that performs the basic operations:

addition, subtraction, multiplication, and division. There, you protected

your application against the invalid operator. Now you have learned about

exception handling. So I want you to make a better implementation using

this knowledge.

You understand that the output should not change for valid inputs. But

for an invalid input, the application should raise an exception. Let me give

you three sample outputs to understand it better.

Chapter 8 Exception Management

250

Here is use case 1. A user enters an invalid number. Since the number

is invalid, you do not need to ask for an operator. In this case, you can

report the issue immediately:

=========================
This is a simple calculator.
It supports the following operations:
i) Addition
ii) Subtraction
iii) Multiplication and
iv) Division.
=========================
Enter the first number:23
Enter the next number:asc
Invalid input.Details: could not convert string to float: 'asc'

Here is use case 2. A user enters an invalid operator:

There is no change in the top-level output. It is not shown
to avoid repetition.
=========================
Enter the first number:12.5
Enter the next number:3
Enter an operator(+,-,*,/): >?
Error details: Invalid operator.

Here is use case 3. A user tries to do an invalid operation:

There is no change in the top-level output. It is not shown
to avoid repetition.
=========================
Enter the first number:27.3
Enter the next number:0
Enter an operator(+,-,*,/): /

Chapter 8 Exception Management

251

Invalid Operation.Details: float division by zero

�Sample Implementation
Let's see the sample implementation for the case study.

�CS8.1 Implementation
Here is the solution to CS8.1. You can consider it as an improved solution

for CS7.1 because it can report a wide range of invalid inputs.

Here is an improved and organized solution for CS7.1. The initial part

is not shown to avoid repetitions. This time, you’ll see the use of try...
except statement. Let me show you the key changes in bold:

i.e. there is no change in the initial part that you saw
in the implementation of CS7.1

def main():
 """
 This is the top-level function.
 It calls the compute() function.
 """
 try:
 usr_input1 = input("Enter the first number: ")
 first_number = float(usr_input1)
 usr_input2 = input("Enter the next number: ")
 second_number = float(usr_input2)
 usr_opr = input("Enter an operator(+,-,*,/): ")
 if usr_opr not in valid_operators:
 raise Exception("Invalid operator.")
 compute(first_number, usr_opr, second_number)

Chapter 8 Exception Management

252

 except ZeroDivisionError as e:
 print(f"Invalid Operation.Details: {e}")
 except ValueError as e:
 print(f"Invalid input.Details: {e}")
 except Exception as e:
 print(f"Error details: {e}")

if __name__ == "__main__":
 main()

Note  Download ch08_cs01.py from the Apress website to see the
complete implementation.

Chapter 8 Exception Management

253© Vaskaran Sarcar 2025
V. Sarcar, Python Bootcamp, https://doi.org/10.1007/979-8-8688-1516-4_9

CHAPTER 9

Programming
with Files
Files are helpful in many scenarios. For example, if you need to process an

enormous amount of data, manually supplying one input at a time makes

the program execution slow. Alternatively, you can store the input data

in a file and allow your program to read the data from it. This approach is

undoubtedly faster than the previous approach. You can also save data by

writing to a file. In this context, the use of logs is quite common in real-

world scenarios.

Files can indeed be of different types. However, while dealing with

them, you’ll discover that in most cases, you need to be familiar with

some fundamental operations such as reading from a file, writing to a file,

handling exceptions during various operations, and so forth. This chapter

focuses on those fundamental operations and tries to simplify the topic

for you.

�Processing Text Files
At a high level, you can consider two types of files: text files and non-text

files, a.k.a. binary files (such as image files or videos). The first one is

human-readable, while the other one is not. Let us start our discussion on

programming with text files.

https://doi.org/10.1007/979-8-8688-1516-4_9#DOI

254

To begin with, let us read from a text file that I saved as OriginalFile.
txt in my preferred location: E:\TestData. Here is the content of the file:

This is a sample text file.
It is stored at E:\TestData in my system.
Let's enjoy learning.

POINT TO NOTE

Instead of seeing the file name with the absolute path, in many programs,

you may see the file name only. Those programs can work if the programs

and the corresponding files reside in the same location. To avoid confusion,

I mentioned the complete file path in all demonstrations in this chapter. So,

once you download these programs, you may need to adjust these locations.

�Reading from a File
You can use a text editor to read the content of a text file. However, you are

learning programming, so let’s read the content using a Python program.

The upcoming program starts with the following lines:

location="e:\\TestData\\OriginalFile.txt"
file_object = open(location, "r")

POINTS TO NOTE

Many authors use single quotes (such as 'r' instead of "r") to describe modes.

However, I'd like to use double quotes to be consistent with the mode literal. In

fact, the PyCharm IDE also suggests the mode inside double quotes.

Chapter 9 Programming with Files

255

The official link Built-in Functions – Python 3.13.2 documentation

describes the open function and its parameters as follows:

open(file, mode='r', buffering=-1, encoding=None,
errors=None, newline=None, closefd=True, opener=None)

Open the file and return a corresponding file object. If the file
cannot be opened, an OSError is raised.

In the upcoming example, I passed only two arguments. However, you

can see that while using the open function, passing the first argument was

mandatory for me. In my example, it represents the location of the file.

I have also passed an optional string to represent the mode in which

the file was opened. While reading a file, you can omit this argument
because the default mode is ‘r’, which means that the file is opened for
reading in the text mode. However, I kept it to make you accustomed to

the mode parameter. It is because you’ll see me using different modes in

the examples of this chapter.

You can use the readline() function to read a complete line from a

file. Since OriginalFile.txt has three lines, I used it three times in the

following demonstration. Finally, I close the file using the close() method.

It is important because you should always close your files.

�Demonstration 9.1

Let’s see the complete program now:

location="e:\\TestData\\OriginalFile.txt"
file_object = open(location, "r")

Approach-1: reading a file line by line
first_line = file_object.readline()
print(first_line)
second_line = file_object.readline()
print(second_line)

Chapter 9 Programming with Files

https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/glossary.html#term-file-object
https://docs.python.org/3/library/exceptions.html#OSError

256

third_line = file_object.readline()
print(third_line)
file_object.close()

POINTS TO NOTE

In Chapter 7, you learned how to execute a program as a main program. If

needed, you can restructure this demonstration and upcoming demonstrations

in this book following that concept.

�Output

Here is the output of the program:

This is a sample text file.

It is stored at E:\TestData in my system.

Let's enjoy learning.

�Analysis

You can see two obvious issues in this demonstration:

•	 This program uses the readline function three times

to read three lines. If the text file (OriginalFile.
txt) contains many more lines, this approach is not

convenient.

•	 In the output, you can see the line breaks between
the lines. This is because readline() inserts a line

break after each line.

Let’s improve the program by tackling the mentioned issues.

Chapter 9 Programming with Files

257

�Demonstration 9.2

This program overcomes the mentioned issues in the previous program as

follows:

•	 It uses a for loop to avoid the repeated use of the

readline() function.

•	 By default, the print function uses the new line

character(’\n’). This program uses the end parameter

inside the print function to control the end of a line.

Let’s see the updated program:

location="e:\\TestData\\OriginalFile.txt"
file_object = open(location, "r")

Approach-2: reading a file using a for loop
for current_line in file_object:
 print(current_line, end=" ")
file_object.close()

�Output

This time, you’d see the following output:

This is a sample text file.
It is stored at E:\TestData in my system.
Let's enjoy learning.

Chapter 9 Programming with Files

258

WARNING

The official link https://docs.python.org/3/tutorial/
inputoutput.html#tut-files warns us by stating the following:

In text mode, the default when reading is to convert platform-specific line
endings (\n on Unix, \r\n on Windows) to just \n. When writing in text mode, the
default is to convert occurrences of \n back to platform-specific line endings.
This behind-the-scenes modification to file data is fine for text files, but will
corrupt binary data like that in JPEG or EXE files. Be very careful to use binary
mode when reading and writing such files.

�Demonstration 9.3

You can also use the read function to read the entire file. Let’s see this in

the following program:

location="e:\\TestData\\OriginalFile.txt"
file_object = open(location, "r")
Approach-3: reading a file using the read() function
content = file_object.read()
print(content)
file_object.close()

�Output

Upon executing this program, you’ll see the same output that you saw in

the previous demonstration. So I’ll not repeat it here.

Chapter 9 Programming with Files

https://docs.python.org/3/tutorial/inputoutput.html#tut-files
https://docs.python.org/3/tutorial/inputoutput.html#tut-files

259

�Using the with Keyword

Closing a file is an important activity. When you close a file, you free

system resources. This activity also allows other code to use that file. If you

forget to close a file, you may not see the immediate effect. However, if you

have too many open files, you may see the impact of memory leaks, which

may end your program abnormally. This is why you should close the file
properly to avoid unwanted situations.

In the previous demonstrations, after opening a file, I used the close()

function before quitting the programs. However, this approach suffers

from a potential drawback. For example, if there is a bug that prevents the

execution of the close() function, the file will not close. In that case, the

data can be lost or corrupted. On the contrary, as a precautionary step, if

you close the file early, your program may start working with a closed file.

It also causes unexpected results. So, if you are unsure when to close a file,

you can leave the decision to Python by using the 'with' keyword. The

official documentation 7. Input and Output – Python 3.13.2 documentation

also states the following:

It is good practice to use the with keyword when dealing with
file objects. The advantage is that the file is properly closed
after its suite finishes, even if an exception is raised at some
point. Using with is also much shorter than writing equivalent
try-finally blocks.

�Demonstration 9.4

The first approach that I showed in Demonstration 9.1 was inefficient. So

let’s focus on the other approaches (that are shown in the previous two

demonstrations) and improve the design following the recommended

suggestion:

Chapter 9 Programming with Files

https://docs.python.org/3/tutorial/inputoutput.html#tut-files
https://docs.python.org/3/reference/compound_stmts.html#with
https://docs.python.org/3/reference/compound_stmts.html#try
https://docs.python.org/3/reference/compound_stmts.html#finally

260

Using the 'with' keyword, updating the previous approaches.
Now Python closes the file when it is no longer needed.

location="e:\\TestData\\OriginalFile.txt"
Approach-2: reading a file using a for loop
with open(location, "r") as file_object:
 for current_line in file_object:
 print(current_line, end='')
print("-"*10)
Approach-3: reading a file using the read() function
with open(location, 'r') as file_object:
 content= file_object.read()
print(content)

�Output

Upon executing this program, you can verify that both approaches can

print the content of the file successfully.

I hope you have got an idea about how to use the ’with’ keyword in

your program. I recommend that you also use the ‘with’ keyword in your
program and let Python decide when to close the file.

�Q&A Session

Q9.1 How many different modes can a file be opened in?
In the PyCharm IDE, if you right-click the open function and investigate the

Declaration or Usages (Ctrl+B), you’ll navigate to the built-in _io.py file.

This file describes the following characters to represent different modes as

follows:

'r': open for reading (default)
'w': open for writing, truncating the file first
'x': create a new file and open it for writing

Chapter 9 Programming with Files

261

'�a�': open for writing, appending to the end of the file if
it exists

'b': binary mode
't': text mode (default)
'+': open a disk file for updating (reading and writing)

You can find these descriptions from the online link 2. Built-in

Functions – Python 3.3.7 documentation as well. This link also talks about

an additional mode, ’U’ (universal newlines mode), that was supposed

to be used for that backward compatibility but should not be used in new

code. At this stage, you do not need to memorize these modes. Upon

practicing, you’ll become familiar with them.

�Writing to a File
Till now, you have seen how to open and read from a text file. In this

section, let’s write something to the file. It is a common and useful
activity because you can verify the result even after the program
finishes executing.

Since you’d like to write to a file, you need to open the file in a different

mode. You learned that the w mode can be used for writing. Let’s examine

this in the following demonstration.

POINT TO REMEMBER

While using the "w" mode, if the file does not exist, the open function will

create the file. However, if the file already exists, Python will erase the current

content of the file. So you need to be careful.

Chapter 9 Programming with Files

https://docs.python.org/3.3/library/functions.html#open
https://docs.python.org/3.3/library/functions.html#open

262

�Demonstration 9.5

At a high level, the following program can be divided into two parts: first,

you write to a file, and next, you read its contents. The last part was not

necessary to examine the write operation because you can go to the target

location and verify the file contents. Still, I have kept this part so that you

can see the modification immediately. Here is the complete program:

location="e:\\TestData\\NewFile.txt"
with open(location, "w") as file_object:
 file_object.write("Python is a programming language. ")
 file_object.write("It supports object-oriented programming.")

print(f"Reading the content of {location} now.")
with open(location, "r") as file_object:
 content = file_object.read()
print(content)

�Output

This program produces the following output.

Reading the content of e:\TestData\NewFile.txt now.
Python is a programming language. It supports object-oriented
programming.

�Q&A Session

Q9.2 Can I avoid the repeated calling of the open function in this
program?
Good catch! By changing the mode from w to w+, it could be done as

follows:

Chapter 9 Programming with Files

263

location="e:\\TestData\\NewFile.txt"
with open(location, "w+") as file_object:
 file_object.write("Python is a programming language.")
 �f�i�le_object.write("It supports object-oriented

programming.")
 file_object.seek(0) # moving the pointer at the beginning
 print(f"Reading the content of {location} now.")
 content= file_object.read()
print(content)

Q9.3 Can I use r+ instead of w+ in the previous code?
If the file already exists, you’ll see the same output. However, if the file does

not exist, using r+ will raise an error. For example, while using the previous

code (shown in the answer to Q9.2), if the file (NewFile.txt) does not exist,

you’ll see the error. Here is a sample for your reference:

Traceback (most recent call last):
 �File "E:\MyPrograms\PythonBootcamp\chapter09\ch09_d05_
writing_to_a_file.py", line 13, in <module>

 with open(location, 'r+') as file_object:
         ~~~~^^^^^^^^^^^^^^^^
FileNotFoundError: [Errno 2] No such file or directory:  
'e:\\TestData\\NewFile.txt'

Now, if you change the mode from r+ to w+, this program will execute 

without any error and produce the intended output:

Reading the content of e:\TestData\NewFile.txt now.
Python is a programming language. It supports object-oriented 
programming.

Now, change the mode from w+ to r+ again. This time, you won’t see 

any issues because the file was already created.

Chapter 9  Programming with Files



264

Q9.4 In the output, the last two lines are squished together. Is this 
correct behavior?
Yes. However, no one prevents you from adding a new line character 

at the end of a line. For example, if I use the following code in my 

Windows system

file_object.write("Python is a programming language. \n")
f�i�le_object.write("It supports object-oriented 
programming. \n")

I can see that the strings appear in different lines in the output.

Q9.5 How can I keep the existing content before writing new content 
to a file?
You can open the file in the append mode (a) and add the new content to 

the end of the file. Here is a sample program for your reference (you have 

already seen the contents of OriginalFile.txt that was saved at  

E:\TestData):

location="e:\\TestData\\OriginalFile.txt"
# Opening the file in 'a' mode and adding the content
with open(location, 'a') as file_object:
    �f�i�le_object.write("Python supports object-oriented 

programming.")

# Verifying the file contents now
with open(location, 'r') as file_object:
    print(f"Reading the content of {location} now.")
    content= file_object.read()
    print(content)

Chapter 9  Programming with Files



265

Let’s verify the sample output as well:

Reading the content of e:\TestData\OriginalFile.txt now.
This is a sample text file.
It is stored at E:\TestData in my system.
Let's enjoy learning.
Python supports object-oriented programming.

Author’s note: You can download ch09_appending_to_a_file.py from the 

Apress website to execute the program.

�Limiting the Size

Since Demonstration 9.3, you have seen me using the read function 

many times as follows: content = file_object.read(). Alternatively, I 

could use file_object.read(size), where size is an optional numeric 

argument. By default, it is -1, which means the entire file. So, to read the 

entire file contents, I did not pass any argument inside the read function.

In this context, the official documentation( 7. Input and Output – 

Python 3.13.2 documentation ) states the following:

When size is omitted or negative, the entire contents of the file 
will be read and returned; it’s your problem if the file is twice 
as large as your machine’s memory. Otherwise, at most size 
characters (in text mode) or size bytes (in binary mode) are 
read and returned. If the end of the file has been reached, f.
read() will return an empty string ('').

This is useful information for you. This is because if you try loading a 

big file at once, you can face a memory shortage problem. To overcome the 

problem, while using the read() function, you can specify the size limit.

To illustrate, in the upcoming example, I’ll use the file NewFile.txt, 

which was already created by Demonstration 9.5. Now, I specify that at 

most ten characters can be read at a time.

Chapter 9  Programming with Files

https://docs.python.org/3/tutorial/inputoutput.html
https://docs.python.org/3/tutorial/inputoutput.html


266

�Demonstration 9.6

Here is the complete program:

location="e:\\TestData\\NewFile.txt"
with open(location, "r") as file_object:
    buffer=10
    content= file_object.read(buffer)
    while content:
        print(content)
        # print(content,end="")
        content = file_object.read(buffer)

�Output

Here is a sample output:

Python is
a programm
ing langua
ge. It sup
ports obje
ct-oriente
d programm
ing.

�Analysis

You can see that each line contains a maximum of ten characters. If you 

replace the line print(content) with print(content,end=""), you’ll see 

that the contents are organized similarly to the input file as follows:

Python is a programming language. It supports object-oriented 
programming.

Chapter 9  Programming with Files



267

�Processing Binary Files
Till now, you have been working with simple text files. Let us now work 

with a binary file. A binary file is a non-text file, such as an image or a 

video. To do reading from a binary file, I stored a flower image, named 

flower.png, inside the location E:\TestData.

�Copying an Image
Let’s make a copy of the image flower.png. So, first, read the image file 

(flower.png) and then write the content to a new file (new_flower.png). Since 

we are processing a binary file, this time, you’ll see me using the modes “rb” 

and “wb” instead of “r” and “w” modes. You understand the changes in 

modes are necessary because we are processing a binary file now.

�Demonstration 9.7

Here is the complete program for you:

# Using two files-one for reading and one for writing
input_file="e:\\TestData\\flower.png"
output_file="e:\\TestData\\new_flower.png"

with open(input_file, "rb") as input_object:
    content=input_object.read()
    with open(output_file, "wb") as output_object:
        output_object.write(content)

�Output

Execute the program and go to the output file location. You can see a 

new image called new_flower.png, which is a duplicate of the original 

image. I’m taking a partial snapshot from my machine to show this (see 

Figure 9-1).

Chapter 9  Programming with Files



268

Figure 9-1.  The new image is created in the target location

�Pickling and Unpickling
Consider the following scenarios:

•	 There is a program that keeps generating a few random 

numbers, which are further processed. Assume 

a scenario while processing those numbers, your 

application reaches an inconsistent state.

•	 There is an application that keeps a record of the 

activities that individual users perform.

•	 You have an application that saves users’ preferences 

and so forth.

From these examples, you understand that you may need to store 

data (even after closing the applications) for various reasons. Now, the 

question is: how do we store these data? There are different ways, such as 

using a text file, connecting to a database, and so on. However, this section 

discusses the binary files. So let’s focus on them.

In the upcoming example, I’ll show you the use of the pickle module. 

Let’s know about it from the official documentation (pickle – Python object 

serialization – Python 3.13.2 documentation):

Chapter 9  Programming with Files

https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html


269

The pickle module implements binary protocols for serializing 
and de-serializing a Python object structure. “Pickling” is the 
process whereby a Python object hierarchy is converted into a 
byte stream, and “unpickling” is the inverse operation whereby 
a byte stream (from a binary file or bytes-like object) is con-
verted back into an object hierarchy. Pickling (and unpick-
ling) is alternatively known as "serialization", "marshalling," 
or "flattening"; however, to avoid confusion, the terms used 
here are "pickling" and "unpickling".

To illustrate pickling and unpickling, let me modify the previous 

demonstration that copied an image. This time, you’ll see two steps:

•	 First, from the input image, you make a pickle file 

(commonly created with a .pickle extension for easier 

understanding).

•	 Second, from this pickle file, you can reconstruct the 

image whenever required.

POINT TO NOTE

I have seen that developers use different extensions for the pickle files such as 

.pickle, .pkl , .pck, and so on. I'd like you to note that Python 3 documentation 

(https://docs.python.org/3.13/library/pickle.html#examples) 

uses the .pickle extension. However, Python 2 used the .pkl extension (see 

https://docs.python.org/2/library/pickle.html#example).

Chapter 9  Programming with Files

https://docs.python.org/3.13/library/pickle.html#examples
https://docs.python.org/2/library/pickle.html#example


270

�Demonstration 9.8

This program creates a pickle file:

import pickle

input_file="e:\\TestData\\flower.png"
pickle_file="e:\\TestData\\flower_pickle.pickle"

with open(input_file, "rb") as ifile:
    content=ifile.read()
    with open(pickle_file, "wb") as pfile:
        pickle.dump(content,pfile)

�Output

Execute the program and go to the output file location. You’ll see a new file 

named flower_pickle.pickle is created. Here is a partial snapshot from my 

machine to show this (see Figure 9-2).

Figure 9-2.  A pickle file is created in the target location

�Demonstration 9.9

Since you have the pickle file (flower_pickle.pickle), you can reconstruct 

the image anytime. Let’s see the following program:

Chapter 9  Programming with Files



271

import pickle

pickle_file="e:\\TestData\\flower_pickle.pickle"
output_file="e:\\TestData\\flower_new.png"

with open(pickle_file, "rb") as pfile:
    content=pickle.load(pfile)
    with open(output_file, "wb") as ofile:
        ofile.write(content)

�Output

Execute the program and go to the output file location. You’ll see a new file 

named flower_reconstructed.png is created. Here is a partial snapshot 

from my machine (see Figure 9-3).

Figure 9-3.  The image is reconstructed in the target location

�Analysis

To demonstrate the overall process, I used two demonstrations instead 

of one. In Demonstration 9.8, you stored the source data in a pickle file 

(flower_pickle.pickle), and in Demonstration 9.9, you reconstructed the 

image (flower_reconstructed.png) from the previously created pickle file.

Chapter 9  Programming with Files



272

By comparing Figures 9-2 and 9-3, you can also notice that the 

construction times of the pickle file and the newly created image file were 

different.

�Q&A Session

Q9.6 Why did you use the pickle module instead of the json module in 
this chapter?
It’s a choice! From the online link pickle – Python object serialization – 

Python 3.13.2 documentation, you’ll know the pros/cons of these modules. 

However, I’d like you to note that since pickle’s data format is Python- 

specific, you do not need to worry about the restrictions imposed by 

external standards (such as JSON). However, it is also true that non-Python 

programs may not be able to reconstruct pickled Python objects.

Finally, note that you were working with an image file (i.e., binary 

data). You can’t directly insert an image into a .json file. Yes, there are 

some workarounds; however, you have seen that the pickle module made 

the process very easy for you.

�Handling Exceptions
To make the programs short and simple, I didn’t consider exception 

handling in the previous demonstrations. However, in real-world 

programming, you cannot ignore this activity. So, while coding, you should 

implement a proper exception-handling mechanism (you learned it in 

Chapter 8). This comment applies to all programs in this book as well.

�FileNotFoundError
When you work with files, your program may not find a file for various 

reasons. Here are some of them:

Chapter 9  Programming with Files

https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html


273

•	 The file resides in a different location.

•	 You misspelled the file name.

•	 The intended file does not exist at all and so on.

So it’s a better practice to put the code in the try-except block to avoid 

unexpected outcomes.

To illustrate, instead of using OriginalFile.txt in Demonstration 9.4, 

if you use a file (e.g., IncorrectFile.txt) that does not exist, you’ll see the 

FileNotFoundError. Here is a sample:

Traceback (most recent call last):
  �File "E:\MyPrograms\PythonBootcamp\chapter09\ch09_d10_
exception_handling.py",

  line 4, in <module>
    with open(location, 'r') as file_object:
         ~~~~^^^^^^^^^^^^^^^
FileNotFoundError: [Errno 2] No such file or directory:
'e:\\TestData\\IncorrectFile.txt'

�Demonstration 9.10

To handle this error, let’s update the implementation as follows:

location="e:\\TestData\\OriginalFile.txt"
location="e:\\TestData\\IncorrectFile.txt" # incorrect
file name
try:
 with open(location, 'r') as file_object:
 content = file_object.read()
except FileNotFoundError as e:
 print(f"The file is not found at {location}")
else:
 print(content+"\n")

Chapter 9 Programming with Files

274

�Output

There is no surprise that if the file is found, the program will print the

content of the file. However, if you use an incorrect file name (as shown in

the commented code), you’ll see a user-friendly message:

The file is not found at e:\TestData\IncorrectFile.txt

Summary
This chapter discussed file handling in detail. In brief, it answered the

following questions:

•	 How can you process text and binary files?

•	 How can you avoid memory leaks while

processing files?

•	 How can you handle exceptions (such as

FileNotFoundError) while processing files?

•	 How can you use the pickle module to perform

pickling and unpickling?

Exercise 9
E9.1 Write a program to print the first “n” lines from a text file. A user
can supply the value of “n.”

E9.2 Write a program that generates ten random integers. Create a list
to hold these integers and dump the data into a new file that holds the
data in a binary format. Then, retrieve the list from this file again and
display the content.
(Hint: Use the concept of pickling/unpickling.)

Chapter 9 Programming with Files

275

E9.3 In Chapter 7, you learned how to execute a program as the main
program. Can you refactor Demonstration 9.10 using that concept?

E9.4 Can you write a program to count an approximate number of
words in a text file.?

E9.5 The json module also has the dump() and load() functions. Similar
to the pickle module, the dump() function can be used to store the data
in JSON format, and the load() function can be used to retrieve the
data from the JSON format. The file extension .json is used to indicate a
file that maintains JSON format. In Exercise 9.2, you tried pickling and
unpickling. Can you do a similar exercise using the json module with
its dump() and load() functions?

�Keys to Exercise 9
Here is a sample solution set for the exercises in this chapter.

�E9.1

Here is a sample implementation (I used the file OriginalFile.txt for this

example. You saw this file at the beginning of the chapter.):

location = "e:\\TestData\\OriginalFile.txt"

def print_lines(input_file, lines):
 ""�" This function prints the first ‘n’ lines from a

file."""
 try:
 with open(input_file, "r") as file_object:
 count = 0
 while count < lines:
 line_content = file_object.readline()
 print(line_content,end='')

Chapter 9 Programming with Files

276

 count += 1
 except FileNotFoundError as ex:
 print(f"The file {input_file} is not found.")
 print(f"Error details:{ex}")

try:
 �u�s�er_input = input('Enter how many lines you want to print

from the file? ')
 number_of_lines = int(user_input)
 print_lines(location,number_of_lines)
except ValueError as e:
 print("Invalid input! Provide the correct input next time!")
 print(f"Error details:{e}")
except Exception as e:
 print("An unknown error occurred.")
 print(f"Error details:{e}")

Here is a sample output for a positive input:

Enter how many lines you want to print from the file? 2
This is a sample text file.
It is stored at E:\TestData in my system.

Here is a sample output for a negative input:

Enter how many lines you want to print from the file? 2.3
Invalid input! Provide the correct input next time!
Error details:invalid literal for int() with base 10: '2.3'

Author’s comment:
You can make a better solution by considering the file name as a user

input. I left this exercise for you.

Chapter 9 Programming with Files

277

�E9.2

Here is a sample implementation:

import pickle
import random

pickle_file="numbers.pickle"
numbers=[]
for i in range(1,11):
 number=random.randint(1,500)
 numbers.append(number)
print("The random numbers are:")
print(numbers)
Dumping/storing the numbers in binary format
with open(pickle_file,"wb") as file:
 pickle.dump(numbers,file)

Retrieving the data from the pickle file
with open(pickle_file, "rb") as file:
 content=pickle.load(file)
 print("The retrieved numbers:")
 print(content)

Here is a sample output:

The random numbers are:
[311, 98, 189, 198, 128, 333, 447, 305, 490, 238]
The retrieved numbers are:
[311, 98, 189, 198, 128, 333, 447, 305, 490, 238]

Author’s comment:
I kept this program and the pickle file (numbers.pickle) in the same

directory. I believe that I do not need to mention that you can store the

pickle file in your preferred location as well. By considering exception

handling, you can further improve the solution.

Chapter 9 Programming with Files

278

�E9.3

Here is the refactored code:

def main():
 location="e:\\TestData\\OriginalFile.txt"
 �# location="e:\\TestData\\IncorrectFile.txt" # incorrect

file name
 try:
 with open(location, "r") as file_object:
 content = file_object.read()
 except FileNotFoundError as e:
 print(f"The file is not found at {location}")
 else:
 print(content+"\n")

if __name__ == "__main__":
 main()

�E9.4

I created a small text file, called sample_text_file.txt, in the same directory

where this program resides. This file has the following contents:

The sky is blue.
Apple is red.
Sam is a good boy.

I used this file for the following implementation:

def count_words(input_file):
 """
 This function counts the approximate number
 of words in a text file.
 """

Chapter 9 Programming with Files

279

 try:
 with open(input_file,"r") as file_object:
 file_content = file_object.read()

 except FileNotFoundError as e:
 print(f"The file {input_file} is not found.")
 print(f"Error details:{e}")
 else:
 separate_words = file_content.split()
 word_count = len(separate_words)
 print("The content of the file:")
 print("-" * 20)
 print(file_content)
 print("-"*20)
 print(f" The file has {word_count} words (approx).")

def main():
 count_words("sample_text_file.txt")

if __name__ == "__main__":
 main()

Here is a sample output:

The content of the file:

The sky is blue.
Apple is red.
Sam is a good boy.

The file has 12 words (approx).

Author’s comment:

Chapter 9 Programming with Files

280

You can avoid using the built-in len function in this implementation.

How? You can use a for loop to calculate the word count as follows:

word_count = len(separate_words)
Alternative solution
word_count = 0
for word in separate_words:
 word_count += 1
There is no change in the remaining code.

You can also enhance this solution by asking the user to input the file

name. I left this exercise for you.

�E9.5

Here is a sample implementation with the key lines in bold:

import json
import random

The json module uses demo
json_file="numbers.json"
numbers=[]
for i in range(1,11):
 number=random.randint(1,500)
 numbers.append(number)
print("The random numbers are:")
print(numbers)
Dumping/storing the numbers in the JSON format
with open(json_file,"w") as file:
 json.dump(numbers,file)

Retrieving the data from the json file
with open(json_file, "r") as file:

Chapter 9 Programming with Files

281

 content=json.load(file)
 print("The retrieved numbers are:")
 print(content)

Author’s comment:
Similar to the solution of E9.2, I kept this program and the JSON file

(numbers.json) in the same directory. If needed, you can choose a

different location for the JSON file as well. By considering exception

handling, you can further improve the solution.

�Case Study
Let’s try to make solutions for the following case studies.

�CS9.1 Problem Statement
Create a program that asks for three user inputs to create three registered

user IDs. You use a list to hold these inputs. Then, create a binary file (say

registered_users.pickle) to save the data. Here is a sample output:

Enter user1: Jack123
Enter user2: Kate25#
Enter user3: Bob07$
3 registered user IDs are saved.

After this activity, create another program that asks the user to enter

his ID. Once the user enters the ID, you load the binary file again to verify

whether it is a registered ID. Here is a sample when the user ID is not saved

in the file:

Enter the user ID: Sam01#
Verifying the user...
Sorry. You are not a registered user.

Chapter 9 Programming with Files

282

Here is another sample where the user ID is found in the file:

Enter the user ID: Bob07$
Verifying the user...
Welcome Bob07$! You are a verified user.

�CS9.2 Problem Statement
This time, you make a report card of students. Assume that a student joins

a beginner’s course in Python. To get a grade card, a student needs to meet

the following criteria:

•	 The student needs to submit two assignments (50

marks each) before appearing in the final examination

(which is 100 marks).

•	 You calculate the final score based on these assignment

scores and the final examination score. Consider 25%

of the total marks in the assignment and 75% of the

final examination score to prepare the grade card.

When a student scores more than 90, he gets an A+,

which means Outstanding. If he scores more than 80,

he gets an A, which means Very Good. If the score is 70

or above, he gets a B, which means Good. Consider a

score that is less than 70 as a Fail.

•	 If any of the assignment scores are found to be greater

than 50, your application should report an error. The

same rule applies if anyone inputs a final examination

score greater than 100.

•	 You save these student records in text files that have

names like student_name.txt. You store these files in a

separate folder. You can name it GradeScores.

Chapter 9 Programming with Files

283

Let me show you three sample outputs:

Here is sample 1. A user enters valid inputs:

Enter the student's name: Ravi S
Assignment-1 score: 25.5
Assignment-2 score: 34.5
Exam score: 87
Final score: 80.25
Grade: A(Very Good)
Get the report card at:
E:\MyPrograms\PythonBootcamp\chapter09\GradeScores\Ravi S.txt

Here is a sample report card that you store. The content of the text file

Ravi S.txt may look like the following:

Report Card
Course name: Python for Beginners
==
Student Name: Ravi S
Assignment-1 score: 25.5
Assignment-2 score: 34.5
Exam Score: 87.0
Final score: 80.25
Grade/Remark: A(Very Good)

Here is sample 2. A user enters an assignment score that is above 50:

Enter the student's name: John
Assignment-1 score: 23
Assignment-2 score: 51.5
Error: Assignment 2 score cannot be greater than 50.
Provide the correct input next time!

Chapter 9 Programming with Files

284

Here is sample 3. A user enters the final examination score that is

above 100:

Enter the student's name: Kate
Assignment-1 score:23
Assignment-2 score:45.3
Exam score:105
Error: Final exam score cannot be greater than 100.
Provide the correct input next time!

�Sample Implementations
Let’s see the sample implementations.

�CS9.1 Implementation
Here is a sample implementation for the first part of the case study:

import pickle
def main():
 users=[]
 for i in range(1,4):
 name=input(f"Enter user{i}: ")
 users.append(name)

 with open("registered_users.pickle","wb") as f:
 pickle.dump(users,f)
 print(f"{len(users)} registered user IDs are saved.")

if __name__ == "__main__":
 main()

Chapter 9 Programming with Files

285

Here is a sample implementation for the second part of the case study:

import pickle

def verify_user(user):
 print("Verifying the user...")
 with open("registered_users.pickle","rb") as f:
 users=pickle.load(f)

 if user in users:
 print(f"Welcome {user}! You are a verified user.")
 else:
 print(f"Sorry. You are not a registered user.")

def main():
 current_user=input("Enter the user ID: ")
 verify_user(current_user)

if __name__ == "__main__":
 main()

�CS9.2 Implementation
In this implementation, I imported the os module at the beginning of this

implementation and used the makedirs() function. Let’s see the function

documentation from the PyCharm IDE for your immediate reference:

def makedirs(name, mode=0o777, exist_ok=False):
 """makedirs(name [, mode=0o777][, exist_ok=False])

 �Super-mkdir; create a leaf directory and all intermediate
ones. Works like mkdir, except that any intermediate path
segment (not just the rightmost)will be created if it does

Chapter 9 Programming with Files

286

not exist. If the target directory already exists, raise an
OSError if exist_ok is False. Otherwise, no exception is
raised. This is recursive.

 """

I added a relative path to the current working directory. Though it was
not necessary, I stored these grade cards in a separate directory to keep
the current working directory clean. This is why you’ll see the following

code segment:

Retrieve the current working directory
current_path = os.getcwd()

Adding a relative path to the current path
relative_path = "GradeScores"
new_path = os.path.join(current_path, relative_path)
Making the directory if it does not exist
if not os.path.exists(new_path):
 os.makedirs(new_path)
new_path = new_path + '\\' + name + '.txt'
print("Get the report card at:")
print(new_path)

You should not find any difficulties in understanding the remaining

segments because those are already discussed in this chapter and the

previous chapters. Here is the complete implementation for you:

import os

class ScoreExceedsError(Exception):
 """ This is a custom exception."""
 pass

def calculate_grade(a1_score, a2_score, e_score):
 """

Chapter 9 Programming with Files

287

 This function calculates the final score.
 Here is the consideration:
 25% of the total marks in assignments and
 75% of the total marks make the grade card.
 """
 final_score = (a1_score + a2_score) * .25 + e_score * .75
 return final_score

def make_grade(score):
 """ This function makes the grade."""
 grade = ""
 if score > 90:
 grade = "A+(Outstanding)"
 elif score > 80:
 grade = "A(Very Good)"
 elif score >= 70:
 grade = "B(Good)"
 else:
 grade = "F(Fail)"
 return grade

def save_scores(name,assign1,assign2,exam,score,grade):
 """
 This function stores the result in a text file.
 It picks the current working directory. Then create a
 directory(if it does not exist),called GradeScores.
 All records are stored as test files inside
 this directory.
 """
 try:
 # Retrieve the current working directory
 current_path = os.getcwd()
 # print("The current working directory:")

Chapter 9 Programming with Files

288

 # print(current_path)
 # Adding a relative path to the current path
 relative_path = "GradeScores"
 new_path = os.path.join(current_path, relative_path)
 # Making the directory if it does not exist
 if not os.path.exists(new_path):
 os.makedirs(new_path)
 new_path = new_path + '\\' + name + '.txt'
 print("Get the report card at:")
 print(new_path)
 with open(new_path,'w') as file_object:
 file_object.write("***Report Card***")
 �f�i�le_object.write("\n***Course name: Python for

Beginners***\n")
 file_object.write("=" * 50)
 file_object.write(f"\nStudent Name: {name}")
 file_object.write(f"\nAssignment-1 score: {assign1}")
 file_object.write(f"\nAssignment-2 score: {assign2}")
 file_object.write(f"\nExam Score: {exam}")
 file_object.write(f"\nFinal score: {score}")
 file_object.write(f"\nGrade/Remark: {grade}")
 except FileNotFoundError as e:
 print(f"The file is missing.Details:{e}")
 except Exception as e:
 print(f"Error details: {e}")

def main():
 """
 It is the top-level function for this application.
 """
 try:
 student_name = input("Enter the student's name: ")

Chapter 9 Programming with Files

289

 assign1 = float(input("Assignment-1 score: "))
 if assign1 > 50:
 �r�a�ise ScoreExceedsError("Assignment1 score cannot

be greater than 50.")
 assign2 = float(input("Assignment-2 score: "))
 if assign2 > 50:
 �r�a�ise ScoreExceedsError("Assignment2 score cannot

be greater than 50.")
 exam = float(input("Exam score: "))
 if exam > 100:
 �r�a�ise ScoreExceedsError("Final exam score cannot be

greater than 100.")
 except ValueError as e:
 print(f"Invalid input.Details:{e}")
 except ScoreExceedsError as e:
 print(f"Error: {e}")
 print("Provide the correct input next time!")
 except Exception as e:
 print(f"Error details: {e}")
 else:
 final_score = calculate_grade(assign1,assign2,exam)
 print(f"Final score: {final_score}")
 grade_score = make_grade(final_score)
 print(f"Grade: {grade_score}")
 �s�a�ve_scores(student_name,assign1,assign2,exam,final_

score,grade_score)

if __name__ == "__main__":
 main()

Chapter 9 Programming with Files

PART III

Introduction to OOP

Object-oriented programming (OOP) is a programming paradigm

centered around objects and classes. It promotes code reusability,

modularity, and abstraction through key concepts like inheritance,

encapsulation, and polymorphism. Python’s OOP approach allows

developers to model real-world entities effectively, making complex

programs more organized, scalable, and easier to maintain.

This part will give you a quick overview of OOP using classes, objects,

and inheritance.

293© Vaskaran Sarcar 2025
V. Sarcar, Python Bootcamp, https://doi.org/10.1007/979-8-8688-1516-4_10

CHAPTER 10

Classes and Objects
Classes and objects are the foundation of object-oriented programming

(OOP). This chapter discusses their usage in Python programming.

�Basic Concepts and Common Terms
To represent a real-world entity, we first create a class and then create

objects from it. Since we create objects of a particular class, we define the

common behavior of these objects within the class. Let me emphasize the

following points that can help you avoid any confusion in the future:

•	 A class is the architectural blueprint that defines the

structure and behavior of the objects. From a single

blueprint, you can create multiple buildings. Similarly,

you can construct multiple objects (or instances) from

a single class. (I ignore some typical corner cases when

I make this statement. For example, a true singleton

class cannot have multiple instances.)

•	 Developers often refer to the terms function and

method interchangeably. Conventionally, a function

defined in a class is termed a method. So your previous

knowledge about functions will be useful while you

exercise OOP as well. We expose object behaviors

through these methods. You may note that a method

can access the data that is contained in a class.

https://doi.org/10.1007/979-8-8688-1516-4_10#DOI

294

•	 We refer to the process of creating an object from a

class as instantiation. This is why the words objects and

instances are often used interchangeably.

POINT TO NOTE

Classes provide the structure (or template), and objects are the actual entities

created based on that structure. However, objects are self-contained; they hold

the data. Interestingly, in the discussion of OOP, developers often use fields,

variables, and attributes to mean the same thing. The same is true for methods

and functions as well.

�Modeling a Class
Normally, a class contains both variables and methods. To begin with, let

me show you a simple class that contains only a method.

To illustrate, let us model a simple class for any student in this world.

You can safely assume that a student must study before appearing for an

examination. Based on this assumption, you can make the following class

called Student:

class Student:
 """ This is a simple class to model a student"""
 def describe(self):
 �"�"�" A simple method to describe the behavior of a

student."""
 print(f"A student must study before an examination.")

Chapter 10 Classes and Objects

295

From this segment of the code, I want to draw your attention to the

following points:

•	 You need to use the class keyword to create a class.

The class has a name, and the line ends with a colon (:).

•	 The indented code shows the class body.

•	 At the beginning, I used a docstring, which tells about

the class. In real-world programming, docstrings are

used to specify what a class can do in your code.

POINT TO NOTE

Once you dive deep into OOP, you'll see the usages of different kinds of

methods, such as instance methods, static methods, and class methods.

In OOP, the instance methods are most common. This chapter and the next

chapter (Chapter 11) will use the instance methods only. The PEP 8 – Style

Guide for Python Code | peps.python.org suggests that you always use self for

the first argument to instance methods. In Appendix A, you'll learn about static

methods and class methods.

�Creating Objects
Till now, you have the class definition only; it does not allocate any

computer memory. However, since I have created a class called Student, I

can create an instance, named sam, from it as follows:

Creating an object from the Student class
sam= Student()

Chapter 10 Classes and Objects

https://peps.python.org/pep-0008/#function-and-method-arguments
https://peps.python.org/pep-0008/#function-and-method-arguments
https://doi.org/10.1007/979-8-8688-1516-4

296

Now, I can invoke the describe method as follows:

Invoking the method
sam.describe()

This code will output the following:

A student must study before an examination.

�Alternative Code
You could invoke the describe method in an alternative way. Let me show

you that as well:

Invoking the method in a different way
Student.describe(sam)

This code will also produce the same output. However, in most cases,

developers use the other approach that I discussed before.

�Q&A Session

Q10.1 The describe method had a parameter called self. In the first
approach, without passing this parameter, how could you invoke the
“describe” method?
It is true that at this stage, the alternative code does not create any

confusion, but the first approach may look surprising. When you called the

instance method using the code sam.describe(), behind the scenes, the

current instance (sam) was passed automatically as an argument. It was

possible because the self parameter is a reference to the instance itself.

You’ll always notice that the “self” parameter appears before any

other parameter(s) in the method definition. It is useful because a Python
method requires the object to be passed as the first argument to a class
to distinguish the object from other objects of the class. (For a static

method, “self” is not required. You can skip that part for now.)

Chapter 10 Classes and Objects

297

POINT TO NOTE

The PEP 8 – Style Guide for Python Code | peps.python.org suggests the

following:

Always use self for the first argument to instance methods.

Author’s note: If you are familiar with Java or C#, you’ll find that self in

Python is similar to this in Java or C#.

Q10.2 Between the code sam.describe() and Student.describe(sam),
which one would you like to use?
I prefer the first one. For example, notice how I used the built-in methods

in Chapter 3. Here is a sample where I called the built-in isdigit method

that was defined in the str class: print(f"Is 25 a valid number? {"25".
isdigit()}"). If you spend a little time on this, you’ll see that other

developers follow the same approach as well.

Q10.3 Do I need to follow any specific conventions while modeling
a class?
In a class name, the first letter of each word is capitalized, and you should

not separate words using underscores. For example, MyClass, Student,
and ColorContainer are examples of some standard class names. Instance

names are lowercase letters, and you can have underscores between the

words. In addition, it’s a better practice to maintain a meaningful docstring

in your class and methods(s). I recommend you to follow this practice.

However, to type less, in the remaining chapter, I use some code fragments

without docstrings. There I focus on some other aspects of a class.

Hope you have got the idea! Now you are ready to execute your first

object-oriented program. Download the complete program ch10_class_
and_objects_intro.py from the Apress website and run it. Since each

part of the program is discussed, I am not showing it again to avoid

repetitions.

Chapter 10 Classes and Objects

https://peps.python.org/pep-0008/#function-and-method-arguments

298

POINTS TO REMEMBER

A class is a logical entity. Once you instantiate a class, you create objects.

These objects occupy memories in your system. So the objects are physical

entities.

Initializer
So far, I have created only one object from the Student class. As said

before, you can create any number of objects from this class. For example,

if you now exercise the following code

Creating another object from the Student class
kate= Student()
Invoking the method
kate.describe()

once again, you’ll see the following output:

A student must study before an examination.

Notice that for each of these objects, the describe method always

displays the same output. In other words, each object describes the same

behavior. It is okay to a certain extent. For example, each man walks, each

player plays, each student has a roll number, and so forth. However, it

is also true that each man walks at varying speeds, each player plays a

game in different ways, and each student has a unique roll number. Let’s

examine how you can model these situations.

Chapter 10 Classes and Objects

299

�Using Initializers
You can use constructors (aka initializers) to run initialization codes
and create the objects. Constructors can be both parameterized and non-

parameterized. When you use a parameterized constructor, you can pass

the necessary arguments to it.

In Python, there is a special method, called __init__(). It runs

automatically whenever you create an instance from the class. Following

the convention, this method has two leading and two trailing underscores.

Here is an example of a non-parameterized constructor in a class.

Ideally, “non-parameterized” means that there is no parameter. But in

Python, __init__(self) takes the argument self automatically, and you

do not need to pass anything inside it. So we often refer to the following

constructor as a non-parameterized constructor:

def __init__(self):
 print("You do not need to supply any parameter.")

Now let me show you a constructor that I can use to initialize two

variables name and roll_number as follows:

def __init__(self,name,roll_number):
 self.name=name
 self.roll_number=roll_number

POINT TO NOTE

I have seen authors who dislike using the word “constructor” in Python

programming. They would simply avoid this word by saying _init_ adds

new attributes to an object. They also explain why they believe that Python

developers should not refer to the _init_ as a constructor. However, "constructor"

Chapter 10 Classes and Objects

300

is a common term in well-known object-oriented programming languages.

I have also seen that in many places of the official documentation, the word

"constructor" is used. So I’ll use the term "constructor" as well. I believe that at

this moment, you do not need to worry much whether the term "constructor" is

absolutely perfect. Still, if you want to avoid the term "constructor", you can call

it "initializer".

Let me use this constructor in the following program.

�Demonstration 10.1

Let me show you a program using the constructor that I just discussed.

Here is the complete program:

class Student:
 """ This is a simple class to model a student"""
 def __init__(self,name,roll_number):
 self.name=name
 self.roll_number=roll_number

 def describe(self):
 """ A simple method to describe a student."""
 �print(f"{self.name} has been assigned roll number

{self.roll_number}")

Creating two objects from the Student class
sam= Student("Sam", 1)
kate= Student("Kate", 2)

Describing the students
sam.describe()
kate.describe()

Chapter 10 Classes and Objects

301

�Output

When you run this program, you see the following output:

Sam has been assigned roll number 1
Kate has been assigned roll number 2

�Analysis

Notice that the Student class used a constructor to initialize the name and

roll number of a student. This program also demonstrated that you can

make different objects by initializing different values of the attributes. Now

let us have a close look at certain portions of this program.

A variable prefixed with self is available to every method in the class.

So when I used these lines

self.name=name
self.roll_number=roll_number

the values associated with the parameters name and roll_number were

assigned to the corresponding variable names and attached to the instance

being created. This is why whenever I created an object, these variables
were initialized.

Note  The named elements' name and roll_number are
normally termed as attributes of this Student class.

In addition, have you noticed that I didn’t declare the variables name

and roll_number in advance in the Student class? In Python programming,

you can create data fields on the fly. This is why if you use the following

lines inside the constructor

self.name=name
self.roll_number=roll_number

Chapter 10 Classes and Objects

302

there is no problem though you did not declare these variables

earlier.

�Changing an Attribute Value
You can update the attribute value inside an object (or instance). For

example, earlier, you created an instance called sam as follows:

sam= Student("Sam", 1)

Notice that inside sam, the attribute name had the value Sam, and the

attribute roll_number had the value 1. You can assign different values in

this instance. The easiest way is to directly access the attribute, say roll_
number, and change the value. Here is an example:

Updating the roll_number
sam.roll_number=11

Note  I intentionally updated the roll number but not the name. You
understand that sam is a better name than object1 or object2, but
it doesn't look good if you replace the name Sam with Bob (for the
object called sam). So I suggest that you prefer a meaningful name
for your object.

Alternatively, you can define a method inside your class to update an

instance value. Once you initialize the object, you can use this instance

method to update the attribute value.

Chapter 10 Classes and Objects

303

�Demonstration 10.2

In this demonstration, I updated a student’s roll number multiple times

using the approaches that I already discussed. Let’s see the complete

demonstration:

class Student:
 """ This is a simple class to model a student"""
 def __init__(self,name,roll_number):
 self.name=name
 self.roll_number=roll_number

 def describe(self):
 """ A simple method to describe a student."""
 �p�r�int(f"{self.name}'s current roll number is {self.

roll_number}")

 def update_roll_number(self, roll_number):
 """ Updating the roll number of a student."""
 self.roll_number=roll_number
 �p�r�int(f"{self.name}'s roll number has been updated to

{self.roll_number}")

Creating an object and showing the details
sam= Student("Sam", 1)
sam.describe()
print("-"*10)

print("Updating the roll number and showing the details:")
sam.roll_number=11
sam.describe()
print("-"*10)

Chapter 10 Classes and Objects

304

print("Updating the roll number again and showing the
details:")
sam.update_roll_number(21)
sam.describe()
print("-"*10)

�Output

Upon executing this program, you’ll see the following output:

Sam's current roll number is 1

Updating the roll number and showing the details:
Sam's current roll number is 11

Updating the roll number again and showing the details:
Sam's roll number has been updated to 21
Sam's current roll number is 21

�Default Attributes
Until now, you saw me passing the values for the attributes. But it is not

mandatory. Instead, you can set a default value for an attribute. Let’s see

an example.

�Applying the Concept
Consider a case where all these students belong to the same institution.

Here, you do not need to pass the institution’s name repeatedly. For

example, let’s assume our students belong to a college called St. Stephen.

In this case, I can set this default value inside a constructor.

Chapter 10 Classes and Objects

305

�Demonstration 10.3

The following example shows such a case:

class Student:
 """ This is a simple class to model a student"""
 def __init__(self,name,roll_number):
 self.name=name
 self.roll_number=roll_number
 self.institution="St. Stephen's"

 def describe(self):
 """ A simple method to describe a student."""
 print(f"Name: {self.name}")
 print(f"Roll number: {self.roll_number}")
 print(f"Institution: {self.institution}")

Creating two objects from the Student class
sam= Student("Sam", 1)
kate= Student("Kate", 2)

Displaying the student details
sam.describe()
print("*"*10)
kate.describe()

�Output

Here is the output of the program:

Name: Sam
Roll number: 1
Institution: St. Stephen's

Chapter 10 Classes and Objects

306

Name: Kate
Roll number: 2
Institution: St. Stephen's

�Analysis

Notice that while creating a Student object, you did not pass the institution

name. This is because the default value for the institution was set inside

the constructor.

�Class Variables versus Instance Variables
The official documentation (https://docs.python.org/3/tutorial/
classes.html) states that

Generally speaking, instance variables are for data unique to
each instance and class variables are for attributes and meth-
ods shared by all instances of the class.

In the previous demonstration, name, roll_number, and institution

are instance variables; these are unique to each instance. Since the

institution name does not vary, you could use the institution as a class

variable and rewrite the Student class as follows (I have commented out

the old code and highlighted the new code; I also marked the variable

types with inline comments for your easy reference):

class Student:
 """ This is a simple class to model a student"""
 institution="St.Stephen's" # class variable
 def __init__(self,name,roll_number):
 self.name=name # instance variable
 self.roll_number=roll_number # instance variable
 # self.institution="St. Stephen's" # instance variable
 # There is no change in the remaining code

Chapter 10 Classes and Objects

https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html

307

�Q&A Session

Q10.4 Instead of using “institution” as a class variable, why
did you use it as an instance variable in the previous program
(Demonstration 10.3)?
I used institution as an instance variable because it is unlikely that all

students in this world belong to the same institution.

�Importing Classes
In a complex real-world application, the code size is gigantic. If you

write the entire code into a single file, you create a huge file. This kind of

practice is commonly discouraged. Instead, Python allows you to store and

segregate your code in modules.

�Importing a Single Class
In Chapter 7, I told you that a module can contain many things such as

variables, functions, and classes. In this chapter, our focus is on classes. So

here I show you how to import classes from a module.

You have seen the Student class in the previous demonstration. Let’s

move this class to a separate file named ch10_student_module. (I used

the prefix ch10_ to indicate that this program belongs to Chapter 10.)

It’s a good practice to use a module-level docstring that can describe the

module. So I have also added a docstring at the top of the file. The ch10_
student_module.py looks like

"""
This module is useful to create a student
and display the necessary information.
"""

Chapter 10 Classes and Objects

308

class Student:
 """ This is a simple class to model a student"""
 def __init__(self,name,roll_number):
 self.name=name
 # The remaining code is not shown

�Demonstration 10.4

Create a new Python file. Save it with a new name, say

ch10_d04__importing_single_class.py, and type the following lines

into it:

from ch10_student_module import Student
Creating two objects from the Student class
sam= Student("Sam", 1)
kate= Student("Kate", 2)

Displaying the student details
sam.describe()
print("*"*10)
kate.describe()

�Output

The program will produce the same output that you saw in the previous

demonstration. To avoid repetition, I did not show it again.

�Analysis

Since I moved the Student class to a separate module and imported the

module, this program produced the same output. However, this time,

the main program file is much cleaner, concise, and easy to read. This

gives you a clue that you can separate the program logic and focus on the

higher-level logic in the main program.

Chapter 10 Classes and Objects

309

�Importing Multiple Classes
To import multiple classes from a module, your module should have

multiple classes. Since our imported module had only one class (Student),

let’s add one more class, called Stream, inside the file ch10_student_
module.py that I used earlier:

class Stream:
 """ Initializes the student's stream """
 def __init__(self, student, stream):
 self.roll_number=student.roll_number
 self.stream=stream

 def display(self):
 """ Return the student details. """
 �return f"Roll number {self.roll_number} belongs to the

{self.stream} stream."

�Demonstration 10.5

Create a new Python file. Save it with a new name (I used the name ch10_
d05_importing_multiple_classes.py) and type the following lines into it:

from ch10_student_module import Student, Stream

Creating a Student instance and displaying the info
sam= Student("Sam", 1)
sam.describe()

stream_sam=Stream(sam,"Science")
print(stream_sam.display())

Chapter 10 Classes and Objects

310

�Output

Once you execute the program, you’ll see the following output:

Name: Sam
Roll number: 1
Institution: St. Stephen's
Roll number 1 belongs to the Science stream.

Note  In our examples, the imported module contains the Student
class and the Stream class. These two classes are related to each
other. It is recommended that you create modules with related classes.

�Importing the Whole Module
You can import the whole module. How to access the classes in the

modules? Chapter 7 gave you the clue! In this case, you can access the

classes using the dot notation.

�Demonstration 10.6

To illustrate, consider the following example, which is an alternative

version of the previous demonstration (notice the key changes in bold):

import ch10_student_module

Creating a Student instance and displaying the info
sam= ch10_student_module.Student("Sam", 1)
sam.describe()

stream_sam= ch10_student_module.Stream(sam, "Science")
print(stream_sam.display())

Chapter 10 Classes and Objects

311

�Output

If you run this program, you’ll see the same output that you saw in the

previous demonstration.

�Alternative Code
Let me show you another way of importing classes from a module. Though

it is not a recommended practice, I present this to you for the sake of

completeness. Here is an alternative version of the previous program:

from ch10_student_module import *

Creating a Student instance and displaying the info
sam= Student("Sam", 1)
sam.describe()

stream_sam= Stream(sam, "Science")
print(stream_sam.display())

This program can produce the same output that you saw in the

previous demonstrations. Now, see the first line of this program: in

Chapter 7, I also told you not to use this kind of import statement. Let me

remind you of some of the typical problems that are as follows:

•	 It is difficult for readers to identify the source.

•	 There is a possibility of name collisions.

�Q&A Session

Q10.5 It’ll be helpful if you explain the previous bullet points with a
program.
You know that the Student class is already included in ch10_student_

module. Let’s add another class that has the same name in the current file

as follows:

Chapter 10 Classes and Objects

312

from ch10_student_module import * # Not a recommended practice

class Student:
 pass

There will be a name collision after the addition
of the Student class in the current file

Creating a Student instance and displaying the info
sam= Student("Sam", 1)
The remaining code…

If you run this program now, you’ll see the following:

 TypeError: Student() takes no arguments

Author’s note: You can download the file ch10_not_recommended.py from

the Apress website to examine this error.

Q10.6 Is there any way to use this new Student class in the current file?
You can import the entire module and use the dot notation to point to the

correct class. Let me show you how to use the following program.

�Demonstration 10.7

Now I added a few lines of code in Demonstration 10.6 and demonstrated

the usage of the new class as follows (notice the changes in bold):

import ch10_student_module

class Student:
 def __init__(self):
 pr�int("Using the new Student class of the current

file now.")

Creating a Student instance and displaying the info
sam= ch10_student_module.Student("Sam", 1)

Chapter 10 Classes and Objects

313

sam.describe()

stream_sam= ch10_student_module.Stream(sam, "Science")
print(stream_sam.display())

Using the Student class of the current file
jack=Student()

�Output

Upon executing the program, you’ll see the following output:

Name: Sam
Roll number: 1
Institution: St. Stephen's
Roll number 1 belongs to the Science stream.
Using the new Student class of the current file now.

The last line of output shows the usage of the new Student class that

was placed in the current file.

�Summary
Classes and objects are the foundation of object-oriented programming

(OOP). This chapter explained them with different code examples. Upon

completion of this chapter, you shouldn’t find any problem answering the

following questions:

•	 What is a class?

•	 What is an object?

•	 How can you use constructors?

•	 How can you change the attribute values?

Chapter 10 Classes and Objects

314

•	 How can you use the default attributes?

•	 How can you reuse the code by importing classes?

�Exercise 10
Let’s solve the following exercises.

E10.1 Can you predict the output of the following code segment?

class Employee:
 def __init__(self,id,name="Anonymous"):
 self.name=name
 self.id = id
 def describe(self):
 return f"{self.name} is an employee with ID: {self.id}"

mike= Employee(1,"Mike")
print(mike.describe())

E10.2 Now replace the following line in E10.1

mike= Employee(1,"Mike")

with the following line:

mike=Employee(1)

Can you predict the output?

E10.3 If you replace the following line in E10.1

def __init__(self,id,name="Anonymous"):

with the following line

def __init__(self, name="Anonymous",id):

can you predict the output?

Chapter 10 Classes and Objects

315

E10.4 Can you predict the output of the following program?

class Employee:
 id=0
 def __init__(self, name="Anonymous"):
 self.name=name
 def describe(self):
 return f"{self.name} is an employee with ID: {self.id}"

kate= Employee("Kate")
print(kate.describe())

E10.5 Can you predict the output of the following program?

class Employee:
 id=0
 def __init__(self, name="Anonymous"):
 self.name=name
 def update_id(self):
 self.id = 100
 def describe(self):
 self.update_id()
 return f"{self.name} is an employee with ID: {self.id}"

jack= Employee("Jack")
print(jack.describe())

�Keys to Exercise 10
Here is a sample solution set for the exercises in this chapter.

�E10.1

The program will produce the following output:

Mike is an employee with ID: 1

Chapter 10 Classes and Objects

316

�E10.2

This code segment uses the default values. If you do not pass the

employee’s name, it accepts the default name “Anonymous.” However, you

need to supply the ID; you cannot bypass this activity. Here is the output:

Anonymous is an employee with ID: 1

�E10.3

In the function definition, a non-default argument cannot be placed after a

default argument. In this case, you’ll encounter the following error:

SyntaxError: parameter without a default follows parameter with
a default

�E10.4

The program shows the usage of a class variable id and it will produce the

following output:

Kate is an employee with ID: 0

�E10.5

The update_id method updates the ID to 100. Since the describe method

calls the update_id method before returning the information of the

employee, you’ll see the following output:

Jack is an employee with ID: 100

�Case Study
You have just started object-oriented programming. Let’s work on some

simple case studies, which are as follows.

Chapter 10 Classes and Objects

317

�CS10.1 Problem Statement
Let’s model a class to represent a car. To simplify things, let’s assume this

class has two attributes: one to display the model of the car and another

to display the manufacturer’s name. Once the class is made, create a few

instances and display the details.

�CS10.2 Problem Statement
A car manufacturing company can design different car models. Upon

completing the previous case study, I would like you to write a function

that creates at least two different car models from two distinct companies.

Let’s store the company-specific models in a list and then use a dictionary

to store those models along with the manufacturer’s name. Finally, display

the car details.

�Sample Implementations
Here are the sample implementations for the case studies.

�CS10.1 Implementation
Here is a sample implementation:

class Car:
 def __init__(self,company,model):
 self.company=company
 self.model=model
 def display_car(self):
 print(f"Company: {self.company}, Model: {self.model}")

Chapter 10 Classes and Objects

318

def main():
 glanza= Car("Toyota","Glanza")
 glanza.display_car()
 mustang= Car("Ford", "Shelby Mustang")
 mustang.display_car()

if __name__== "__main__":
 main()

This program will produce the following output:

Company: Toyota, Model: Glanza
Company: Ford, Model: Shelby Mustang

�CS10.2 Implementation
Here is a sample implementation:

class Car:
 def __init__(self,company,model):
 self.company=company
 self.model=model
 def display_car(self):
 print(f"Company:{self.company}, Model: {self.model}")

def cars_info():
 # Making Toyota cars
 glanza= Car("Toyota","Glanza")
 rumion = Car("Toyota", "Rumion")
 # Listing Toyota models
 toyota_models = [glanza.model, rumion.model]

 # Making Ford cars
 mustang= Car("Ford", "Shelby Mustang")

Chapter 10 Classes and Objects

319

 gt40=Car("Ford","Ford GT40")
 fiesta=Car("Ford","Ford Fiesta")
 # Listing Ford models
 ford_models=[mustang.model,gt40.model,fiesta.model]

 # Storing the models along with the company names
 cars = {"Toyota": toyota_models,
 "Ford": ford_models}
 # Traversing the dictionary and displaying the details
 for key,value in cars.items():
 print(f"{key} models: {value}")

if __name__== "__main__":
 cars_info()

This program will produce the following output:

Toyota models: ['Glanza', 'Rumion']
Ford models: ['Shelby Mustang', 'Ford GT40', 'Ford Fiesta']

Chapter 10 Classes and Objects

321© Vaskaran Sarcar 2025
V. Sarcar, Python Bootcamp, https://doi.org/10.1007/979-8-8688-1516-4_11

CHAPTER 11

Inheritance
Every time you do not need to start from scratch to model a class. Instead,

you can consider an existing class and make a specialized version of it

using inheritance. The primary aim of inheritance is to promote reusability

and eliminate redundancy in code. It also shows how a child class can get

the features (or characteristics) of its parent class. This chapter focuses on

this topic.

�Basic Concepts and Terminologies
Let’s understand the concept using some examples. Suppose you already

have a Vehicle class to represent any vehicle in this world. Later, you need

to design a Bus class to represent any bus in this world. However, you know

a bus is nothing but a special type of vehicle. So, instead of designing from

scratch, you can make a class that is a specialized version of Vehicle and

call it Bus. By doing this, you can type less and avoid lots of duplicate code

in a program.

Developers may refer to the existing class and the new specialized

class using different names. In our example, since the Bus class (the new

class) derives from the Vehicle class (the existing class), the Vehicle class

is termed as the parent class, base class, or superclass (a C# programmer

often calls a parent class a base class, but a Java programmer refers to

it as a superclass), and the Bus class is termed as the child class, or

derived class.

https://doi.org/10.1007/979-8-8688-1516-4_11#DOI

322

Note  Inheritance represents the IS-A relationship. notice that in our
example, a bus is a vehicle, but the reverse is not necessarily true.

While coding, you place a parent class one level up from a derived class

in a hierarchical chain. Then you can add or change the functionalities

(methods) inside a derived class. When you change a parent class

functionality inside a child class, you say “I’m overriding the functionality

into the child class.” Ideally, these modifications should be meaningful,

and they should not change the original architecture.

In some scenarios, instead of replacing a specific functionality of the

parent class, a derived class can extend that functionality. How? It can

invoke the base class functionality just before adding something new to

that functionality. Do not worry! Shortly, you’ll see the code examples.

POINTS TO REMEMBER

using inheritance, you avoid writing the code from scratch. Instead, you make

a specialized version of a parent class and can use the attributes and methods

of the parent class. a child class can use any number of attributes or methods

of the parent class. It can also define new attributes and methods of its own.

�Types of Inheritance
There are different kinds of inheritance. Let’s examine them.

ChapTer 11 InheriTance

323

�Single Inheritance
In the simplest form of inheritance, a child class derives from a parent

class. In Demonstration 10.3 of the previous chapter (Chapter 10), you saw

the following class:

class Student:
 """ This is a simple class to model a student """
 def __init__(self,name,roll_number):
 self.name=name
 self.roll_number=roll_number
 self.institution="St. Stephen's"

 def describe(self):
 """ A simple method to describe a student."""
 print(f"Name: {self.name}")
 print(f"Roll number: {self.roll_number}")
 print(f"Institution: {self.institution}")

We know that in a college or institution, students can enroll in different

departments. So let’s model a scenario where, along with the previous
information, you also print which department a student belongs to. The

following diagram (Figure 11-1) will help you visualize the model.

Figure 11-1.  Single inheritance

ChapTer 11 InheriTance

324

�Understanding the Super Call

In the upcoming program, you’ll see the use of the super method. It allows

you to call a parent class method. For example, see the following code:

class Department(Student):
 def __init__(self, name, roll_number, dept):
 """ Initializing the parent class attributes. """
 super().__init__(name, roll_number)
 self.dept=dept

This code segment tells us the following points:

•	 The Department class inherits from the Student class.

•	 Before it initializes the specialized attribute dept, it

initializes other attributes (name and roll_number) of

the Student class.

Now you should not find any difficulties in understanding the

following program.

�Demonstration 11.1

Since there is no change in the Student class, it is not shown to avoid

repetition. Let’s focus on the new code segment now:

There is no change in the Student class

class Department(Student):
 def __init__(self, name, roll_number, dept):
 super().__init__(name, roll_number)
 self.dept=dept

ChapTer 11 InheriTance

325

 def describe(self):
 """ A specialized method to describe a student."""
 super().describe()
 print(f"Department: {self.dept}")

Creating two objects from the Student class
sam= Department("Sam", 1,"Physics")
kate= Department("Kate", 2,"Computer Science")

Displaying the student details
sam.describe()
print("*"*10)
kate.describe()

�Output

This time, upon executing the program, you’ll be able to see the

department info as well:

Name: Sam
Roll number: 1
Institution: St. Stephen's
Department: Physics

Name: Kate
Roll number: 2
Institution: St. Stephen's
Department: Computer Science

�Analysis

Apart from initializing the parent class attributes, the Department class also

overrides the parent class method describe(). This is why you can see the

student’s details along with the department info.

ChapTer 11 InheriTance

326

�Q&A Session

Q11.1 What do you mean by method overriding?
Notice that the parent class (Student) and the child class (Department) both

include the same-named method: describe(). Programmatically, when the

child class redefines the parent class method, we call it method overriding.

Q11.2 Instead of defining a new method, why did you override the
describe method?
It makes more sense when you describe a similar behavior. So there is no

problem if you execute the following code:

sam= Student("Sam", 1)
sam.describe()
sam= Department("Sam", 1,"Physics")
sam.describe()

However, if you use a different method name that is specific to the

Department class, a Student class instance cannot invoke that method.

Q11.3 It will be helpful if you clarify the last line of the previous answer.
Let’s add the following method in the Department class:

def show_elective_paper(self,subject):
 """ A specialized method to mention the elective papers."""
 �p�r�int(f"{self.name} has taken {subject} as an elective

subject. ")

Now the following code can work:

sam= Department("Sam", 1,"Physics")
sam.show_elective_paper("Nuclear Physics")

However, the following code will not work:

sam= Student("Sam", 1)
sam.show_elective_paper("Nuclear Physics") # Error

ChapTer 11 InheriTance

327

This is because the show_elective_paper method was not available in

the Student class.

Q11.4 It appears to me that I can avoid the super call. For example, in
Demonstration 11.1, if you replace the line super().__init__(name,
roll_number) with the line Student.__init__(self,name, roll_
number), you can get the same output. Is this correct?
This is not a standard practice, and it is not suitable in the long run. Since

you hard-coded the inherited class name, refactoring the code can be

challenging for you in the future (you may need to refactor the code to

accommodate a change in the design or inheritance hierarchy for various

reasons).

This is why expert programmers prefer to invoke the super function in

their code. This approach promotes indirection because we do not need to

mention the delegate class by name.

�Multiple Inheritance
In the case of multiple inheritance, a child class can derive from multiple

parent classes. Here is a sample diagram (see Figure 11-2) for your

reference.

Figure 11-2.  Multiple inheritance

ChapTer 11 InheriTance

328

Programming languages like C# and Java do not support multiple

inheritance directly (through class) to avoid ambiguity and complexity.

Those languages tackle the situation using a different mechanism (you

need to understand interfaces). However, Python allows this. Let’s

discuss how Python tackles the challenges that may arise due to multiple

inheritance.

�Demonstration 11.2

First, execute the following program, and analyze the output:

class Father:
 def describe(self):
 print("The father is an employee.")
class Mother:
 def describe(self):
 print("The mother is a housewife.")
class Child(Father,Mother):
 def describe(self):
 print("The child is a student.")

child=Child()
child.describe()

�Output

This program will produce the following output:

The child is a student.

�Analysis

Let’s replace the describe method inside the Child class with a pass

statement as follows

ChapTer 11 InheriTance

329

class Child(Father,Mother):
 # def describe(self):
 # print("The child is a student.")
 pass

and execute the program again. You can use a pass statement when a

statement is required syntactically, but your program does not need to take

any action. You can consider it as a placeholder that can be replaced with a

code block in the future. This time, you’ll see the following output:

The father is an employee.

�Method Resolution Order

Now let me ask you: why do you see this output? Is this output arbitrary?

Or why do you not see the line “The mother is a housewife.” in the

output? To answer these questions, you need to understand method

resolution order (MRO). In simple terms, it is the order in which Python

searches a method in an inheritance hierarchy. The basic scheme is

depth-first, left-to-right.

POINT TO NOTE

If you have the following code

class derivedClassname(base1, base2, base3):

<statements>

the official doc (https://docs.python.org/3/tutorial/classes.
html#inheritance) states the following:

For most purposes, in the simplest cases, you can think of the search
for attributes inherited from a parent class as depth-first, left-to-right,
not searching twice in the same class where there is an overlap in the

ChapTer 11 InheriTance

https://docs.python.org/3/tutorial/classes.html#inheritance
https://docs.python.org/3/tutorial/classes.html#inheritance

330

hierarchy. Thus, if an attribute is not found in DerivedClassName, it is
searched for in Base1, then (recursively) in the base classes of Base1,
and if it was not found there, it was searched for in Base2, and so on.

There are many articles/blog posts on the topic, but I recommend you first

read guido's post: https://python-history.blogspot.com/2010/06/
method-resolution-order.html.

To illustrate, in our program, when you use the line child.describe()

•	 First, it searches for the describe method in the Child

class (since child is a Child class object).

•	 If it is not found, it will search in the parent class.

However, in our example, the Child class has two

parent classes, named Father and Mother. Following

the “depth-first, left-to-right” rule, it will start

searching the describe method inside Father. If the

method is not found in the Father class, it will then

search for this method in the Mother class.

You can also verify this claim by executing the line print(Child.mro()),

which will print the output

[<class '__main__.Child'>, <class '__main__.Father'>, <class
'__main__.Mother'>, <class 'object'>]

�Q&A Session

Q11.5 Is there any way to change the search order? For example, if the
describe method is not found in the Child class, I’d like to check the
Mother class before the Father class.
You can replace the line class Child(Father,Mother) with the following one

class Child(Mother,Father):

ChapTer 11 InheriTance

https://python-history.blogspot.com/2010/06/method-resolution-order.html
https://python-history.blogspot.com/2010/06/method-resolution-order.html

331

to fulfill your demand. You may also note that after this change,

print(Child.mro()) will print the following:

[<class '__main__.Child'>, <class '__main__.Mother'>, <class
'__main__.Father'>, <class 'object'>]

Q11.6 Why do I see <class ‘object’> in the previous output?
It is the ultimate parent class in the class hierarchy. You can examine this

by investigating builtins.py. There, you’ll see the following documentation

as well:

class object:
 """
 The base class of the class hierarchy.
 �When called, it accepts no arguments and returns a new
 �featureless instance that has no instance attributes and

cannot be given any.
 """
The remaining portions are not shown

�Investigating the Super Call
It is interesting to note that a super call does not go to the object’s parent

class; it passes the control to the next thing that is placed in the object’s

MRO. How can you verify this? Let’s run the following program.

�Demonstration 11.3

To discuss the topic, I have introduced a new class named Grandfathers.

Both the Father and Mother classes inherit from this class. The remaining

code is almost similar to the previous demonstration, except this time, the

Father class’s describe method made a super call, but the Mother class’s

describe method did not make such a call. Here is the complete program:

ChapTer 11 InheriTance

332

class Grandfathers:
 def describe(self):
 print("Both grandfathers are artists.")

class Father(Grandfathers):
 def describe(self):
 print("The father is an employee.")
 super().describe()

class Mother(Grandfathers):
 def describe(self):
 print("The mother is a housewife.")

class Child(Father,Mother):
 pass

child=Child()
child.describe()
print(Child.mro())

�Output

This program will produce the following output:

The father is an employee.
The mother is a housewife.
[<class '__main__.Child'>, <class '__main__.Father'>, <class
'__main__.Mother'>, <class '__main__.Grandfathers'>, <class
'object'>]

�Analysis

This time, the output is interesting. Since the Child class did not have

the describe method, the control needed to search for this method in its

parent classes (Father and Mother). However, as per the MRO, it searched

ChapTer 11 InheriTance

333

the Father class before the Mother class and, eventually, got the method

and displayed the content. So, there is no problem understanding the first

line of the output.

However, the second line in this output is interesting: notice

that from the Father class, the super call did not go to its parent class,

Grandfathers; instead, it went to the Mother class. Why? Look into the

MRO again, and you’ll understand that it’s the expected behavior.

You may also note that the describe method of the Mother class made

no more super calls; so there is no more output from the invocation of

child.describe().

However, if you add a super call in the describe method of the Mother

class as follows (the bold line is added)

class Mother(Grandfathers):
 def describe(self):
 print("The mother is a housewife.")
 super().describe()

you’ll see the following output (notice the change in bold):

The father is an employee.
The mother is a housewife.
Both grandfathers are artists.
[<class '__main__.Child'>, <class '__main__.Father'>, <class
'__main__.Mother'>, <class '__main__.Grandfathers'>, <class
'object'>]

By looking at the MRO, you know that this time this new super call was

supposed to be moved to the Grandfathers class from the Mother class.

Hence, there is no confusion!

ChapTer 11 InheriTance

334

POINT TO REMEMBER

now you understand that a super call does not necessarily go to the object's

parent class; it passes the control to the next thing that is placed in the

object's MRo.

�Hierarchical Inheritance
In hierarchical inheritance, multiple child classes can derive from one

parent class. For example, you know that a bus is one type of vehicle.

Similarly, a train is another type of vehicle. So you can design a Bus class

and a Train class by deriving from the Vehicle class. Here is a sample

diagram for your reference (see Figure 11-3).

Figure 11-3.  Hierarchical inheritance

�Multilevel Inheritance
In multilevel inheritance, a child class derives from a parent class that, in

turn, derives from another parent class. In other words, a child class has a

grandfather. For example, a “goods train" is different from a “passenger
train," but they both fulfill the basic criteria of a train, which in turn is

a vehicle. To design this scenario, you can start with a Vehicle class. Then

you create a child class, called Train, that derives from the Vehicle class.

ChapTer 11 InheriTance

335

Finally, you can derive a child class, say GoodsTrain or PassengerTrain,

which derives from the Train class. Here is a sample diagram (see

Figure 11-4) for your reference.

Figure 11-4.  Multilevel inheritance

�Hybrid Inheritance
There is another type of inheritance known as hybrid inheritance. It is a

combination of two or more types of inheritance.

POINT TO NOTE

If you can model single and multiple inheritance, you should not have any

difficulties modeling the other types, such as hierarchical or multilevel

inheritance. The same comment applies when you model a hybrid inheritance

as well. I leave these exercises to you. If you still find any difficulties in

implementing these ideas, you can refer to the exercises E11.3 and E11.4 of

this chapter.

ChapTer 11 InheriTance

336

�Private Variables and Methods
If you are familiar with object-oriented programming languages like Java,

C#, C++, etc., you will notice the use of public, private, and protected

variables (and methods). If not, let me give you the idea with simple

examples.

Consider your ATM card or credit card credentials. You do not share

this information with anybody else. These are your private data.

You must keep these cards in a place that is unknown to an outsider.

However, your spouse may know about these cards and the place where

you keep them. You can consider that place as a protected area for your

cards. In programming languages like Java, apart from the containing class,

the child classes can access the protected variables (and methods). In

simple words, you extend the visibility to some extent, but not to everyone.

On the other hand, anyone can access public information. For

example, an advertisement in a newspaper or visiting hours mentioned in

a hospital’s notice board represent public data. In programming, public

data has maximum visibility.

�Does Python Have Private Variables?
In Java, C#, or C++, declaring a variable public, private, or protected is

straightforward. For example, you use the keyword “private” to declare a

private variable. However, Python does not have real private variables.

The official source 9. Classes – Python 3.13.3 documentation states:

“Private” instance variables that cannot be accessed except
from inside an object don’t exist in Python.

Interestingly, this link also acknowledges that we may need

class-private members in certain scenarios. How to handle those

situations? The official documentation 6. Expressions – Python 3.13.3

documentation states:

ChapTer 11 InheriTance

https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/reference/expressions.html#private-name-mangling
https://docs.python.org/3/reference/expressions.html#private-name-mangling

337

When an identifier that textually occurs in a class definition
begins with two or more underscore characters and does not
end in two or more underscores, it is considered a private
name of that class.

Once you mark a variable (or method) private following this

suggestion, you cannot access the variable (or the method) in the

usual way.

Now you have got the clue! You can use the underscore(s) in a
similar context to get a behavior close to the private variable concept.
Let us examine this with an example.

If you execute the following code

class Person:
 def __init__(self,name):
 self.name=name
 self.designation= "Teacher"
 self.__salary = 10000.5 # acts like a private variable

amit=Person("Amit")
print(amit.name) # OK
print(amit.designation) # OK

there is no surprise that you’d see the following output:

Amit
Teacher

However, if you write the following

print(amit.__salary) # Error

you’ll see the following:

AttributeError: 'Person' object has no attribute '__salary'

ChapTer 11 InheriTance

338

�Accessing Private Data
Then how can you access the __salary attribute? Let me show you some

approaches:

You can introduce a method inside the Person class that can access the

__salary attribute. Here is a sample:

def display_salary(self):
 print(f"{self.name} earns ${self.__salary} per month.")

Now the code amit.display_salary() can display the required

information in the output: Amit earns $10000.5 per month.
There is an alternative way! The official documentation 9.

Classes – Python 3.13.3 documentation states:

Since there is a valid use-case for class-private members
(namely to avoid name clashes of names with names defined
by subclasses), there is limited support for such a mechanism,
called name mangling. Any identifier of the form __spam (at
least two leading underscores, at most one trailing under-
score) is textually replaced with _classname__spam, where
classname is the current class name with leading underscore(s)
stripped.

Now you understand that you can use the following code

print(amit._Person__salary)

to display Amit’s salary as well. Let’s review all these concepts using

the following demonstration.

�Demonstration 11.4

Now I present a complete demonstration with supportive comments. If

you uncomment the corresponding codes, you will get errors. I have kept

them for your reference:

ChapTer 11 InheriTance

https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html

339

class Person:
 def __init__(self,name):
 self.name =name
 self.designation = "Teacher"
 self.__salary = 10000.5 # acts like a private variable

 def display_salary(self):
 print(f"{self.name} earns ${self.__salary} per month.")

amit=Person("Amit")
print(amit.name) # OK
print(amit.designation) # OK

print(amit.__salary) # Error
amit.display_salary() # OK
print(amit._Person__salary) # OK too

�Output

Here is the output:

Amit
Teacher
Amit earns $10000.5 per month.
10000.5

�Q&A Session

Q11.7 How does name mangling help?
It helps you avoid name clashes between a parent class and its derived

class. Particularly, it helps your subclasses override methods without

breaking intraclass method calls.

ChapTer 11 InheriTance

340

Q11.8 Can you show me a program that explains the last line of the
previous answer?
Consider the following program (you can download ch10_
understanding_name_mangling.py from the Apress website) where both

the parent class and the derived class contain a method named display:

class Parent:
 def __init__(self):
 print("Invoking the display method...")
 self.display()
 def display(self):
 print("The parent.display is called.")

class Child(Parent):
 def display(self):
 print("The child.display is called.")

child=Child()

If you execute this program, you’ll see the following output:

Invoking the display method...
The child.display is called.

Notice that since the Child class does not have a constructor, the

control reaches the parent class constructor. However, the parent class

constructor invoked the display method of the derived class, though it

was supposed to call its own display method (notice that the code in the

parent class was self.display()).

Now introduce some changes in the Parent class as follows:

class Parent:
 def __init__(self):
 print("Invoking the display method...")
 # self.display()

ChapTer 11 InheriTance

341

 self.__display()
 def display(self):
 print("The parent.display is called.")
 __display=display
There is no change in the remaining code

Upon executing the modified program, you’ll see the following output:

Invoking the display method...
The parent.display is called.

You can see that this time the display method of the Parent class is

called from the Parent class constructor, which means that the “intraclass
method call” is not broken now.

You may also note that at present, the child class instance cannot call

the parent class’s display using the following line:

child.__display() # error

Author’s note: Though name mangling is a big and complex topic, I

wanted to give you an overview of it. In general, the mangling rules

are designed to avoid accidents. You can find many online lectures on

this topic. If interested, you can go through those lectures. However,

I recommend you visit the online link https://www.youtube.com/
watch?v=0hrEaA3N3lk to explore some interesting cases related to

this topic. Normally, to make things simple, I try to avoid the double

underscore prefix in my code.

�Final Thoughts
Inheritance is undoubtedly helpful. However, it’s possible to abuse

inheritance and create unrelated hierarchies. Also, by breaking a system

into many small pieces, you can complicate the integration and testing

ChapTer 11 InheriTance

https://www.youtube.com/watch?v=0hrEaA3N3lk
https://www.youtube.com/watch?v=0hrEaA3N3lk

342

processes. As you learn more, you’ll also identify that “has-a” relationships

(compositions) can serve you better than the “is-a” relationships

(inheritance) in many different scenarios, particularly when you

investigate the design patterns. Despite these challenges, inheritance has

its own significance and usefulness. No one can ignore this fact!

�Summary
This chapter gave you an overview of inheritance and answered the

following questions:

•	 How does inheritance help you in OOP?

•	 What are the different types of inheritances? How can

you implement them?

•	 What is method overriding?

•	 What is method resolution order (MRO) in Python?

•	 How does name mangling work in Python?

�Exercise 11
E11.1 Can you predict the output of the following code segment?

class Vehicle:
 def __init__(self):
 print("A vehicle is created.")
class Bus(Vehicle):
 def __init__(self):
 super().__init__()
 print("A bus is created.")

vehicle=Bus()

ChapTer 11 InheriTance

343

E11.2 If you comment out the line super().__init__() in the previous
exercise (E11.1), what will be the output?

E11.3 Can you predict the output of the following code segment?

class Grandfather:
 def __init__(self,grandfather):
 print(f"Grandfather: {grandfather}")

class Father(Grandfather):
 def __init__(self, father, grandfather):
 super().__init__(grandfather)
 print(f"Father: {father}")

class Child(Father):
 def __init__(self,name,father,grandfather):
 super().__init__(father,grandfather)
 print(f"Child: {name}")

jack=Child("Jack","Robert","Smith")

E11.4 Can you predict the output of the following code segment?

class Car:
 def __init__(self):
 print("It is a car.")

class ElectricCar(Car):
 def __init__(self):
 super().__init__()
 print("It uses an electric motor. ")

class DieselCar(Car):
 def __init__(self):
 super().__init__()
 print("It uses a diesel engine. ")

ChapTer 11 InheriTance

344

first_car= ElectricCar()
print("-"*10)
second_car= DieselCar()

E11.5 Can you predict the output of the following code segment?

class Quadrilateral:
 def show(self):
 print("I am a quadrilateral.")

class Parallelogram(Quadrilateral):
 def show(self):
 print("I am a parallelogram.")

shape=Parallelogram()
shape.show()

E11.6 Can you predict the output of the following code segment?

class Parent:
 pass
class Child(Parent):
 def display(self):
 print("Child.display")
parent=Parent()
parent.display()

E11.7 Can you predict the output of the following code segment?

class A:
 def display(self):
 print("A.display")

class B(A):
 def display(self):

ChapTer 11 InheriTance

345

 print("B.display")
 super().display()

class C(A):
 def display(self):
 print("C.display")

class D(C, B):
 pass

d=D()
d.display()
print(D.mro())

E11.8 Predict the output when you use the following definition of D in
the previous exercise (E11.7):

class D(B,C):
 pass

E11.9 Can you predict the output of the following code segment?

class Calculator:
 def sum(self,a,b):
 return a+b

class AdvancedCalculator(Calculator):

 def sum(self, a, b,c):
 return a+b+c

calc = AdvancedCalculator()
print(f"2 + 3.5 + 7 = {calc.sum(2,3.5,7)}")
print(f"2 + 3.5 = {calc.sum(2,3.5)}")

ChapTer 11 InheriTance

346

E11.10 Given the following code

class A:
 a=1
 _b=2
 __c=3
 __d_=4
 __e__=5

can you point out the erroneous lines of code in the following
segment?

object1=A()
print(object1.a)
print(object1._b)
print(object1.__c)
print(object1._A__c)
print(object1.__d_)
print(object1._A__d_)
print(object1.__e__)

E11.11 Can you predict the output of the following code segment?

class Parent:
 def show(self):
 return "Parent.show"
 __show=show

class Child(Parent):
 def show(self):
 return "Child.show"

child=Child()
print(child.show())
print(child._Parent__show())

ChapTer 11 InheriTance

347

�Keys to Exercises 11
Here is a sample solution set for the exercises in this chapter.

�E11.1

This program will produce the following output:

A vehicle is created.
A bus is created.

�E11.2

Since you do not use the super call inside the derived class constructor,

this time you’ll see the following output:

A bus is created.

�E11.3

This program shows an example of multilevel inheritance. Here is

the output:

Grandfather: Smith
Father: Robert
Child: Jack

�E11.4

This program shows an example of hierarchical inheritance. Here is

the output:

It is a car.
It uses an electric motor.

It is a car.
It uses a diesel engine.

ChapTer 11 InheriTance

348

Notice that when you create an ElectricCar instance, it does not

provide any information about a diesel car. Similarly, when you create

a DieselCar instance, it does not provide any information about an

electric car.

�E11.5

If you understood method overriding, you’d not face any difficulties in

understanding the following output:

I am a parallelogram.

�E11.6

You’ll see the following error:

AttributeError: 'Parent' object has no attribute 'display'

Explanation: In Q11.3, you’ve seen that a parent class object cannot access

the method that is specific to the child class. The same concept applies

here. In other words, a derived class can access the features of the parent

class, but the reverse is not true.

�E11.7

If you understood method resolution order (MRO), you would not face any

difficulties in understanding the following output:

C.display
[<class '__main__.D'>, <class '__main__.C'>, <class
'__main__.B'>, <class '__main__.A'>, <class 'object'>]

Explanation: Notice that the D class did have the display method. So the

control needed to search for this method in its parent classes (C and B).

However, as per the MRO, it searched the C class before the B class and,

eventually, got the method and displayed the content.

ChapTer 11 InheriTance

349

�E11.8

If you understood method resolution order (MRO), you would not face any

difficulties in understanding that this time, the program will produce the

following output:

B.display
C.display
[<class '__main__.D'>, <class '__main__.B'>, <class
'__main__.C'>, <class '__main__.A'>, <class 'object'>]

Additional note: However, if you redefine the C class in this
program as follows (the bold line is added)

class C(A):
 def display(self):
 print("C.display")
 super().display()

you’ll see the following output (notice the change in bold):

B.display
C.display
A.display
[<class '__main__.D'>, <class '__main__.B'>, <class
'__main__.C'>, <class '__main__.A'>, <class 'object'>]

By looking at the MRO, you know that this time the super call was

supposed to be moved to the A class.

�E11.9

You know that Python does not support method overloading. So the last

line of the program will raise an error. Here is a sample output for your

reference:

ChapTer 11 InheriTance

350

2 + 3.5 + 7= 12.5
Traceback (most recent call last):
 �File "E:\MyPrograms\PythonBootcamp\chapter11\ch11_e09.py",
line 11, in <module>

 print(f"2+3.5= {calc.sum(2,3.5)}") # Error
                    ~~~~~~~~^^^^^^^
TypeError: AdvancedCalculator.sum() missing 1 required 
positional argument: 'c'

However, you can provide a workaround by redefining the sum method 

in the child class (AdvancedCalculator) as follows:

def sum(self, a, b, c=0):
        return a+b+c

After making this change, the program can execute without the issue 

and produce the following output:

2 + 3.5 + 7= 12.5
2 + 3.5 = 5.5

You can make this sum method even better by making it capable of 

processing a variable number of arguments as follows:

def sum(self, *numbers):
    total=0
    for number in args:
        total += number
    return total

�E11.10

The erroneous lines are highlighted in bold. For the remaining lines, the 

corresponding output is shown in inline comments:

ChapTer 11  InheriTance



351

print(object1.a) # Outputs 1
print(object1._b) # Outputs 2
print(object1.__c) # Error
print(object1._A__c) # Outputs 3
print(object1.__d_) # Error
print(object1._A__d_) # Outputs 4
print(object1.__e__) # Outputs 5

�E11.11

This program will show the following output:

Child.show
Parent.show

�Case Study
Let’s try to make solutions for the following case studies.

�CS11.1 Problem Statement
Let’s create an animal hierarchy and describe them. First, create an Animal 

class at the top of the hierarchy. Let’s assume that this class has two 

attributes, named type and sound. To describe the animal behavior, let’s 

create a method, called describe, in this class as well.

Once the Animal class is ready, derive two classes, named Dog and 

Tiger, from it and update the attributes along with the behavior. Now 

create one instance from each of the specialized classes and display the 

details. Here is a sample output for your reference:

ChapTer 11  InheriTance



352

Dogs are domestic animals.
They prefer barking.

Tigers are wild animals.
They prefer roaring.

�CS11.2 Problem Statement
Create an application that can design computer science courses that can 

vary across institutions. Here are the assumptions:

•	 The course includes three subjects. Two subjects are 

common in all institutions. Let us assume these two 

subjects are Mathematics and Artificial Intelligence. 

However, the third one is an elective paper that can 

vary across institutions.

•	 While initiating the course, the user needs to supply 

the institution name along with the elective paper. 

To reduce the code size, you can assume there is no 

invalid user input to consider.

Here is a sample input:

Enter the institution name: St. Stephens College
Enter the elective paper: Python Programming

Here is a sample output:

**********
Institution name: St. Stephens College
Computer science course includes:
1:Mathematics.
2:Artificial Intelligence.
3:Python Programming
**********

ChapTer 11  InheriTance



353

�Sample Implementations
Let’s see the sample implementations.

�CS11.1 Implementation
Here is a sample implementation:

class Animal:
    def __init__(self):
        self.type = "unknown"
        self.sound = "unknown"

    def describe(self):
        print(f"Different animals make different sounds.\n")

class Dog(Animal):
    def __init__(self):
        self.type = "domestic"
        self.sound = "barking"
    def describe(self):
        print(f"Dogs are {self.type} animals. ")
        print(f"They prefer {self.sound}.\n")

class Tiger(Animal):
    def __init__(self):
        self.type = "wild"
        self.sound = "roaring"
    def describe(self):
        print(f"Tigers are {self.type} animals. ")
        print(f"They prefer {self.sound}.\n")

ChapTer 11  InheriTance



354

animal=Dog()
animal.describe()

animal=Tiger()
animal.describe()

�CS11.2 Implementation
Here is a sample implementation:

class Engineering:
    """ Engineering is the parent class. """
    def __init__(self,institution):
        # Initializes the common subjects
        self.institution = institution
        self.subject_1 = "Mathematics."
        self.subject_2 = "Artificial Intelligence."

class ComputerScience(Engineering):
    """
    The ComputerScience class inherits from
    the Engineering class.
    """

    def __init__(self,institution, elective):
        """ Initialize starts from parent class."""
        super().__init__(institution)
        self.subject_3 = elective

    def course_details(self):
        """ Prints the course details of an institution. """
        print("*"*10)
        print(f"Institution name: {self.institution}")
        print("Computer science course includes:")

ChapTer 11  InheriTance



355

        print(f"1:{self.subject_1}")
        print(f"2:{self.subject_2}")
        print(f"3:{self.subject_3}")
        print("*" * 10)

# Supply the institution name
institution_name = input("Enter the institution name: ")
# Enter the elective paper
elective_paper = input("Enter the elective paper: ")
cs_course= ComputerScience(institution_name,elective_paper)
cs_course.course_details()

Gentle Reminder: By considering the exception-handling mechanism, 

you can improve these implementations. In addition, while implementing 

the case studies in this chapter, I have not used the construct if __name__ 
== "__main__":. However, if needed, you can always control the program 

executions using this construct. I leave these exercises to you.

ChapTer 11  InheriTance



357© Vaskaran Sarcar 2025 
V. Sarcar, Python Bootcamp, https://doi.org/10.1007/979-8-8688-1516-4

�APPENDIX A

Supplementary 
Material
Chapter 2 discussed operators. This appendix provides a detailed discussion 

on them. In Chapter 10, you were introduced to the OOP principles. 

Thereafter, you used instance methods in many demonstrations. Once you 

deep dive into Python programming, you’ll also see the use of static methods 

and class methods. This appendix discusses how to use them as well.

�More on Operators
Let us test some common operators. These are easy to understand. I’m 

about to execute them in the PyCharm Terminal.

�Arithmetic Operators
These are used to perform common mathematical operations. Probably, 

most of us are familiar with these operators. Before I use the arithmetic 

operators, I use two variables, x and y. I assign them the initial values 25 

and 10 as follows:

>>> x=25
>>> y=10

https://doi.org/10.1007/979-8-8688-1516-4#DOI


358

Addition operator (+):

>>> x+y
35

Subtraction operator (-):

>>> x-y
15

Multiplication operator (*):

>>> x*y
250

Division operator (/):

>>> x/y
2.5

Modulus (or remainder) operator (%):

>>> x%y
5

Explanation: If you divide 25 by 10, 5 is the remainder.

Exponentiation operator (**):

>>> y**4
10000

Explanation: 10*10*10*10=10000

Floor division (//) operator:

>>> print(x//y)
2

Explanation: You get the answer to the nearest whole number. Consider 

another example: 14/3=4.666 (approx). So 14//3 gives you the answer as 4.

Appendix A  Supplementary Material



359

�Assignment Operators
You can use these operators to assign some values to the variables. 

Typically, you use them to assign the value of the right side of the 

expression to the left side of the operand. For example, to assign 5 to x, you 

write x=5.

Often, you use them to type less as well. For example, x+=3 is 

shorthand for x = x+3. Similarly, x -=5 is a shorthand for x = x-5.

Let us test the common assignment operators:

Assign 3 to x and verify the result:

>>> x=3
>>> x
3

Now, assign 10 to a new variable (a). Assign this new variable to the 
latest value of x and verify the result:

>>> a=10
>>> x=a
>>> x
10

Increment the latest value of x by 2:

>>> x+=2
>>> x
12

Decrement the latest value of x by 3:

>>> x-=3
>>> x
9

Appendix A  Supplementary Material



360

Multiply the latest value of x by 7:

>>> x*=7
>>> x
63

Divide the latest value of x by 10:

>>> x/=10
>>> x
6.3

Set a new value (13) to x and apply the modulus assignment 

operator (%=):

>>> x=13
>>> x%=5
>>> x
3

Set a new value (25) to x and apply the floor division operator (//=):

>>> x=25
>>> x//=7
>>> x
3

Set two values to x and y and test exponentiation assignment:

>>> x=5
>>> y=4
>>> x**=y
>>> x
625

Explanation: If you multiply 5 four times, you’ll get 5*5*5*5=625.

Appendix A  Supplementary Material



361

�Comparison (or Relational) Operators
These operators are used to compare the equality (or inequality) of two 

values (or operands). The result of the comparison is a Boolean value, i.e., 

either True or False. You can use Table A-1 for your reference.

Table A-1.  The relational operators

Operator Name Operator Symbol Example Expected Result

Strictly greater than > 10>7 True

Strictly less than < 10<7 False

Greater than or equal >= 19>=12 True

Less than or equal <= 19<=12 False

Equal == 25 == (18+7) True

Not equal ! = 25 != (18+7) False

Assign 7 to x and 5 to y, and then, let’s do some exercises on the 
comparison operators:

>>> x=7
>>> y=5
>>> x==y
False
>>> x!=y
True
>>> x==y+2
True
>>> x!=y+2
False

Appendix A  Supplementary Material



362

�Logical Operators
You can use these operators when you work on conditional statements. 

You can make a complex Boolean expression by combining simple 

Boolean expressions using “logical AND,” “logical OR,” and “logical 
NOT” operators. To understand these, let us suppose you are testing two 

statements:

•	 In the case of a logical OR, if at least one statement is 

true, the combined result is True; otherwise, it is False. 

You use or to denote logical OR.

•	 In the case of a logical AND, if both statements are true, 

the combined result is True; otherwise, it is False. You 

use and to denote logical AND.

•	 The logical NOT does the opposite – it reverses the 

result. For example, if the result is True, it reverses it to 

False and vice versa. You use not to denote logical NOT.

Let me show you some examples in a Python shell:

>>> 25>21 and 34>29.5
True
>>> 25>21 and 34<29.5
False
>>> 25>21 or 34<29.5
True
>>> not(45>23)
False
>>> not(25.2>34 and 12<5)
True
>>> x,y=10,20
>>> x>3 and y>19
True

Appendix A  Supplementary Material



363

>>> not (x>3 or y<15)
False

�Identity Operators
You can test an object’s identity using the operators is and is not. Let’s 

understand their usage.

The following program defines a class Student. Then it creates two 

Student objects jack and bob. Finally, it verifies whether these are the same 

object. Here is the complete program with the supporting comments:

# Defining the Student class
class Student:
    def __init__(self,name):
        self.name= name

# Creating two objects
jack = Student("Jack")
bob = Student("Bob")

# Verifying the object's identity
print(f"Are jack and bob the same object? {jack is bob}")
print(f"Is jack different from bob ? {jack is not bob}")

Upon executing this program, you should see the following output:

Are jack and bob the same object? False
Is jack different from bob ? True

Now create another object jack2 as follows:

jack2=Student("Jack")

Appendix A  Supplementary Material



364

You can see that both jack and jack2 have the same name: Jack. 

However, are they the same? Let’s verify by executing the following line 

of code:

print(f"Are jack and jack2 the same object? {jack is jack2}")

The previous line will produce the output

Are jack and jack2 the same object? False

Are you surprised? Let us visit the official documentation page  

(6. Expressions – Python 3.13.3 documentation) that states:

The operators is and is not test for an object’s identity: x is y is 
true if and only if x and y are the same object. An Object’s 
identity is determined using the id() function. x is not y 
yields the inverse truth value.

How does the id() function work? Let me pick the function 

documentation from the builtins.py:

def id(*args, **kwargs): # real signature unknown
    """
    Return the identity of an object.

    Th�is is guaranteed to be unique among simultaneously 
existing objects.

    (�CPython uses the object's memory address.)
    """
    pass

The function documentation is self-explanatory. To confirm, let’s 

try to print the IDs of the objects, jack and jack2, by executing the 

following code:

print(f"The ID of jack is {id(jack)}")
print(f"The ID of jack2 is {id(jack2)}")

Appendix A  Supplementary Material

https://docs.python.org/3/reference/expressions.html#is
https://docs.python.org/3/reference/expressions.html#is
https://docs.python.org/3/reference/expressions.html#is-not
https://docs.python.org/3/library/functions.html#id


365

Here is a sample output (the ID can vary on your computer):

The ID of jack is 2198121512112
The ID of jack2 is 2198124721360

Now you understand that jack and jack2 point to different memory 
locations. Hence, they are not the same!

Interestingly, you can also use the is and is not operators to check 

if the variable is of a certain type. For example, if you now examine the 

following lines of code

print(f"Is jack a Student object? {type(jack) is Student}")
print(f"Is jack an int type? {type(jack) is int}")
print(f"Is bob not an int type? {type(bob) is not int}")

you’ll see the output

Is jack a Student object? True
Is jack an int type? False
Is bob not an int type? True

Author’s note: You can download the program app1_d01_identity_
operator.py to execute the complete program.

POINT TO NOTE

In certain cases, you may notice an unusual behavior of the is operator. 

The official documentation 6. Expressions – Python 3.13.3 documentation 

mentions this by stating the following:

Due to automatic garbage-collection, free lists, and the dynamic nature of 
descriptors, you may notice seemingly unusual behaviour in certain uses of 
the is operator, like those involving comparisons between instance methods or 
constants. Check their documentation for more info.

Appendix A  Supplementary Material

https://docs.python.org/3/reference/expressions.html#is
https://docs.python.org/3/reference/expressions.html#is


366

�Membership Operators
You can use “in” and “not in” to test whether an element is present 

(or absent) in a sequence such as a string, list, tuple, or dictionary. The 

in operator returns True if the element is found in the sequence and 

False otherwise. The not in operator does the opposite. In Chapter 6, 

you already saw a usage when I presented you the following code and 

associated output.

Code:

# Checking whether an element is present inside a list
names = ["John", "Sam","Bob", "Ester"]
print(f"Is 'Sam' present on the list? {'Sam' in names} ")
print(f"Is 'sam' present on the list? {'sam' in names} ")
# Checking whether an element is absent in this list
p�r�int(f"Is 'Jeniffer' missing from the list? {'Jennifer' not in 
names}")

Output:

Is 'Sam' present on the list? True
Is 'sam' present on the list? False
Is 'Jeniffer' missing from the list? True

Let us perform similar tests with a string, a tuple, and a dictionary as 

well. Let’s execute the following code (the associated output is shown in 

inline comments):

# String
message = "Welcome"
print(f"The string is: {message}")
p�r�int(f"Is 'com' present in the string? {'com' in message}")
p�r�int(f"Is 'com' absent in the string? {'com' not in message}")
print("-"*10)

Appendix A  Supplementary Material



367

# Tuple
numbers = (1, 2, 3)
print(f"The contents of the tuple are: {numbers}")
print(f"Is 1 present in the tuple? {1 in numbers}")
print(f"Is 2 absent in the tuple? {2 not in numbers}")
print("-"*10)

# Dictionary
sample_dict = {"key1": 10, "key2": 25}
print(f"The contents of the dictionary are: {sample_dict}")
pr�int(f"Is key1 a key in the dictionary? {'key1' in 
sample_dict}")

p�r�int(f"Is 20 a value in the dictionary? {20 in sample_dict.
values()}")

Here is the output:

The string is: Welcome
Is 'com' present in the string? True
Is 'com' absent in the string? False
----------
The contents of the tuple are: (1, 2, 3)
Is 1 present in the tuple? True
Is 2 absent in the tuple? False
----------
Is key1 a key in the dictionary? True
Is 20 a value in the dictionary? False

Author’s note: You can download app1_d02_membership_operators.py 

from the Apress website to execute this program.

Appendix A  Supplementary Material



368

�Bitwise Operators
We use these operators for binary numbers. Here, operands are integers, 

but Python treats them as binary digits. Since we compare bit by bit of 

the binary codes, we call them bitwise operators. The common bitwise 

operators are

•	 Bitwise or: You use “|” to denote bitwise or. When you 

compare two bits, the resultant bit is 1 if at least one of 

the two bits is 1.

•	 Bitwise and: You use “&” to denote bitwise and. When 

you compare two bits, the resultant bit is 1 if both 

bits are 1.

•	 Bitwise exclusive or: You use “^” to denote bitwise 

exclusive or. When you compare two bits, the resultant 

bit is 1 if ONLY one of the two bits is 1.

•	 Bitwise inversion: You use “~” to denote bitwise not. 

This operator inverts all the bits in a binary number 

(i.e., you change 1 to 0 and 0 to 1 for each bit).

•	 Left shift: You use “<<” to denote the zero-fill left shift 

operator. Here, x<<y simply means that the resultant x 

will appear with the bits shifted to the left by y places. 

The 0s are inserted as new bits on the right-hand side.

•	 Right shift: You use “>>” to denote the signed right shift 

operator. Here x>>y simply means that the resultant x 

will appear with the bits shifted to the right by y places 

and fills 0 on voids.

Let us understand this better. Consider two numbers 3 and 5. In 

an 8-bit number system, 3 can be represented in binary as 0000 0011. 

Similarly, 5 can be represented in binary as 0000 0101. You may use the 

Appendix A  Supplementary Material



369

bin() function to convert from a decimal number to a binary number. For 

example, see the following code that was executed in a Python shell:

>>> bin(3)
'0b11'
>>> bin(5)
'0b101'

�Special Notes

The online link https://wiki.python.org/moin/BitwiseOperators states:

Python considers two’s complement binary form, which is the 
same as the classical binary representation for positive inte-
gers, but is slightly different for negative numbers.

The previous link also confirms that

Python doesn’t use 8-bit numbers. It USED to use however 
many bits were native to your machine, but since that was 
non-portable, since Python 3 ints are arbitrary precision. Thus 
the number -5 is treated by bitwise operators as if it were writ-
ten “...1111111111111111111011”.

As you can easily understand that to make the discussion easy, I 
started the discussion with the classical binary form and 8-bit number 
system. Let’s start examining the operators.

First, let’s apply the “bitwise or” operator on these numbers:

0000 0011
0000 0101
_______________
0000 0111

So the result will be 1*20+ 1* 21 +1* 22 =1+2+4=7.

Appendix A  Supplementary Material

https://wiki.python.org/moin/BitwiseOperators


370

Let us test this in the Python shell now:

>>> 3|5
7

Let’s apply the “bitwise and” operator on the numbers (3 
and 5) now:

0000 0011
0000 0101
_______________
0000 0001

So the result will be 1*20 =1.

Let us test this in the Python shell now:

>>> 3&5
1

Let’s apply the “bitwise exclusive or” on the numbers (3 and 5) now:

0000 0011
0000 0101
_______________
0000 0110

So the result will be 0*20+ 1* 21 +1* 22 =0+2+4=6.

Therefore, in the Python shell, you’ll see the following results:

>>> 3^5
6

Let’s apply the << operator on the numbers 3 and 5:
3 in binary is 0000 0011
Now 3<<2 becomes: 0000 1100, i.e.,12

5 in binary is 0000 0101
So, 5<<1 becomes 0000 1010, i.e., 10

Appendix A  Supplementary Material



371

Therefore, in the Python shell, you’ll see the following results:

>>> 3<<2
12
>>> 5<<1
10

Let’s apply the >> operator on the numbers 3 and 5:
3 in binary is 0000 0011
Now 3>>2 becomes: 0000 0000 ,i.e.,0

In the same way, 5>>2 becomes 0000 0001, i.e., 1

In the same way, 5>>1 becomes 0000 0010, i.e., 2

Let us test this in the Python shell now:

>>> 3>>2
0
>>> 5>>2
1
>>> 5>>1
2

Understanding the “bitwise not” operator is not always easy. The link 

BitwiseOperators - Python Wiki explains the following point:

Negative numbers are written with a leading one instead of a 
leading zero. So, if you are using only 8 bits for your twos-com-
plement numbers, then you treat patterns from “00000000” to 
“01111111” as the whole numbers from 0 to 127, and reserve 
“1xxxxxxx” for writing negative numbers. A negative number, 
-x, is written using the bit pattern for (x-1) with all the bits 
complemented (switched from 1 to 0 or 0 to 1). So, -1 is com-
plement (1  - 1) = complement (0) = “11111111”, and -10 is 
complement (10  - 1) = complement (9) = complement 
(“00001001”) = “11110110”. This means that negative num-
bers go all the way down to -128 (“10000000”).

Appendix A  Supplementary Material

https://wiki.python.org/moin/BitwiseOperators


372

As per the previous information, you can say that

-4 = Complement for (4-1)= 3, which says ~3 is -4
-6 = Complement for (6-1)= 5, which says ~5 is -6
Therefore, in the Python shell, you see the following results:

>>> ~5
-6
>>> ~3
-4

�Static Methods
In OOP, the usage of instance methods is common, and you are already 

familiar with that. Now I show you static methods and Python-specific 

class methods. These are useful when you learn advanced programming in 

Python. It may seem complicated at the beginning, but a careful analysis 

can make things easier for you.

Let us begin with a class with an initializer and an instance method:

class Color:
    fav_color = "Green"

    def __init__(self, color):
        self.fav_color = color

    def instance_method(self):
        print("The instance method is called.")
        print(f"My favorite color is: {self.fav_color}")

You know that you can create an object of the Color class and call the 

instance_method. Here is a sample code segment:

Appendix A  Supplementary Material



373

# Creating an object from the Color class
favorite_color = Color("Blue")
# Calling the instance method
favorite_color.instance_method()

If you run this code, you can get the following output:

The instance method is called.
My favorite color is: Blue

�How to Use?
Till this point, everything is straightforward. Now I introduce a static 

method inside the Color class. Python’s static methods have the following 

characteristics:

•	 There is a decorator @staticmethod before the method 

definition.

•	 There is no self parameter in the class definition.

•	 A static method can be called without creating an 

object of the class. You use the class name to invoke the 

static method.

POINT TO NOTE

Static methods are useful for utility functions (or operations) that make sense 

in the context of the class. These methods don’t need access to any instance/

class attributes.

Appendix A  Supplementary Material



374

Here is a sample:

@staticmethod
def static_method():
    print("The static method is called.")
    print("You can call me without creating an instance.")
    print(f"My favorite color is: {Color.fav_color}")

If the Color class contains this static method, the following code 

segment can invoke this method as follows:

Color.static_method()

and produce the following output:

The static method is called.
You can call me without creating an instance.
My favorite color is: Green

Note T he concept of static method is also present in many other 
programming languages, such as Java and C#.

�Q&A Session

QA1.1 When should I consider using static methods?
You have seen that the static methods can be called without creating any 

instances. It means these are not instance-specific. This gives you a clue 

that if you need a function that logically belongs to a class but does not 

need to access or modify the state of an instance, you can make it static. 

For example, if you make a Person class and want to check whether a 

person is an adult, you can make the function static. It is because the 

criterion of becoming an adult is not specific to a person; it applies to 

every person.

Appendix A  Supplementary Material



375

Author’s note: Overuse of static methods goes against the principles of 

OOP. So make a function static only when it makes sense.

�Class Methods
Now I introduce a class method inside the Color class. It’s a special 

inclusion in Python programming. Notice the following points in this 

segment:

•	 You use a decorator @classmethod before the method 

definition.

•	 Again, the self parameter is absent in the method 

definition.

•	 A class method can also be called without creating an 

object of the class. You use the class name to invoke the 

class method.

•	 Now the question is: how does a class method differ 

from a static method? The class method must have 

a reference to the class object as the first parameter, 

usually denoted with cls, whereas a static method can 

have no parameters at all.

Let’s see a class method:

@classmethod
def class_method(cls):
    print("The class method is called.")
    print("You can call me without creating an instance.")
    print(f"My favorite color is: {cls.fav_color}")

Appendix A  Supplementary Material



376

POINT TO NOTE

The PEP 8 – Style Guide for Python Code | peps.python.org suggests the 

following:

•	 Always use self for the first argument to instance methods.

•	 Always use cls for the first argument to class methods.

�How to Use?
If the Color class contains this class method, the following code segment 

can invoke this method as follows

Color.class_method()

and produce the following output:

The class method is called.
You can call me without creating an instance.
My favorite color is: Green

Author’s note: I chose the parameter name “cls” following the 

convention. If you use any other name, that will work too, but experts do 

not recommend that.

�Q&A Session

QA1.2 From the previous outputs, apart from some syntactical 
differences, I could not figure out how a class method, a static method, 
and an instance method differ from each other. Can you throw some 
light on this?
Let us assume the Color class has an instance method, a static method, 

and a class method as follows:

Appendix A  Supplementary Material

https://peps.python.org/pep-0008/#function-and-method-arguments


377

class Color:
    fav_color = "Green"

    def __init__(self, color):
        self.fav_color = color

    def instance_method(self):
        print("The instance method is called.")
        print(f"My favorite color is: {self.fav_color}")
        print("-"*15)

    @staticmethod
    def static_method():
        print("The static method is called.")
        print("You can call me without creating an instance.")
        print(f"My favorite color is: {Color.fav_color}")
        print("-"*15)

    @classmethod
    def class_method(cls):
        print("The class method is called.")
        print("You can call me without creating an instance.")
        print(f"My favorite color is: {cls.fav_color}")
        print("-" * 15)

Let me set a new color through an instance of the Color class and 

invoke these methods as follows:

# Creating an object from the Color class
favorite_color = Color("Blue")
# Calling the instance method
favorite_color.instance_method()
# Calling the static method
Color.static_method()

Appendix A  Supplementary Material



378

# Calling the class method
Color.class_method()

There is no surprise that you’ll see the following output:

The instance method is called.
My favorite color is: Blue
---------------
The static method is called.
You can call me without creating an instance.
My favorite color is: Green
---------------
The class method is called.
You can call me without creating an instance.
My favorite color is: Green
---------------

Notice that the color “Blue” is reflected when you use the instance 

method. But the static method or the class method did not change the 

“Green” color (the value of the class-level variable fav_color). It is 

because both the class method and the static method are bound to the 

class, but not to an object. I hope that this is clear and you can see how a 
class method (or static method) differs from an instance method.

Author’s note: You can download app1_d03_investigating methods.py 

from the Apress website to execute this program.

Let’s do some more analysis. This time, I made the Color class simpler. 

It has a class variable color, an instance method display, and a class 

method update_color. The class looks as follows:

class Color:
  color = "Green"
  def display(self):
     print(f"My favorite color is: {self.color}")

Appendix A  Supplementary Material



379

  @classmethod
  def update_color(cls, newcolor):
     cls.color = newcolor
     print(f"The default color is updated to {newcolor}.")

Let us now exercise the following code:

print(f"The current default is: {Color.color}")
# making an instance of the Color class
color1= Color()
color1.display()
color1.update_color("Blue")
color1.display()
print(f"The current default is: {Color.color}")

Upon executing the previous segment, you should see the 

following output:

The current default is: Green
My favorite color is: Green
The default color is updated to Blue.
My favorite color is: Blue
The current default is: Blue

Notice the first and the last line of the output. You can see that the 
default value of the class variable (color) is updated from Green 
to Blue.

Now, remove the @classmethod decorator of the update_color 

method in the Color class and execute the previous code again. This time, 

you’ll see the following output (notice the change in bold):

The current default is: Green
My favorite color is: Green
The default color is updated to Blue.

Appendix A  Supplementary Material



380

My favorite color is: Blue
The current default is: Green

Notice that though an instance of the Color class changed its default 

color, the value of the class variable is unchanged.
You can see that a class method can access class attributes and modify 

them. On the contrary, since a static method does not have an implicit 

first argument like cls, it cannot modify the class-level variables. A static 

method does not take a self argument as well. So you can use a static 

method as a utility method that does not require instance data or class-

level data.

Finally, though an instance method can access the attributes and 

modify them, the changes are specific to an instance. So, if you need to 

modify class-level data, you must opt for the class methods.

Author’s note: You can download app1_d04_investigation_continued.py 

from the Apress website to execute the program that we just discussed.

Before I finish this discussion, I want to draw your attention to 

the following statements from Built-in Functions – Python 3.13.3 

documentation:

A class method can be called either on the class (such as C.f()) 
or on an instance (such as C().f()). The instance is ignored 
except for its class. If a class method is called for a derived 
class, the derived class object is passed as the implied first 
argument.

This is a useful piece of information when you work on inheritance. To 

illustrate, let us consider the following program where I invoke different 

methods using objects. (I know invoking class methods and static methods 

using objects may seem to be unusual. However, for the sake of discussion, 

let us do this.)

Appendix A  Supplementary Material

https://docs.python.org/3/library/functions.html#classmethod
https://docs.python.org/3/library/functions.html#classmethod


381

class Parent:
    def instance_method(self):
        print(f"The instance method is called.{self}")
    @staticmethod
    def static_method():
        print("The static method is called.")
    @classmethod
    def class_method(cls):
        print(f"The class method is called.{cls}")

class Child(Parent):
    """ This is a Child class."""
    pass

# Creating an object from the Parent class
sample_object = Parent()
sample_object.instance_method()
# Parent.static_method()
sample_object.static_method() # Also ok
# Parent.class_method()
sample_object.class_method() # Also ok

print("*"*20)

# Using the Child class object now,
sample_object = Child()
sample_object.instance_method()

# Child.static_method()
sample_object.static_method() # Also ok

# Child.class_method()
sample_object.class_method() # Also ok

Appendix A  Supplementary Material



382

Author’s note: You can download app1_d05_class_method_contd.py 

from the Apress website to execute this program.

Here is a sample output from my computer:

The instance method is called.<__main__.Parent object at 
0x0000016610677CB0>
The static method is called.
The class method is called.<class '__main__.Parent'>
********************
The instance method is called.<__main__.Child object at 
0x0000016610677E00>
The static method is called.
The class method is called.<class '__main__.Child'>

By looking at this output, you can tell whether the Parent class object 

called the class method or the derived class object called it. You’ll find 

this mechanism useful when you make an advanced application. But 

static methods do not tell any such information. It is another important 

difference between a class method and a static method.

Finally, from this output, you can see that behind the scenes

•	 The invocation of sample_object.instance_method() 

transformed the code to instance_method(sample_
object).

•	 The invocation of sample_object.static_method() 

transformed to static_method().It means no 

additional argument is added in the function call.

•	 The invocation of sample_object.class_method() 

transformed to class_method(type(cls)). 

Appendix A  Supplementary Material



383

�Conclusion

Both the class method and the static method are bound to a class, but not 

to an object. You do not use a class name to invoke an instance method. 

However, in general, you use class names to invoke a class method or a 

static method.

Appendix A  Supplementary Material



385© Vaskaran Sarcar 2025 
V. Sarcar, Python Bootcamp, https://doi.org/10.1007/979-8-8688-1516-4

�APPENDIX B

What’s Next?
Python is a useful programming language that is gaining popularity every 

day. After finishing this book, I hope you have a solid understanding of it. 

Now I encourage you to read related topics from other books, articles, or 

blogs. Most importantly, keep experimenting with new code and continue 

learning. As we all know, practice makes perfect.

I too consistently experiment with programs and learn from others. 

Below is a list of recommended books, courses, and articles from which 

I have gained valuable insights. I believe that these materials (or their 

updated editions) will be equally beneficial to you.

�Books
Here is my recommended list of books:

•	 Think Python by Allen Downey (O’Reilly Media; third 

edition, 2024)

•	 Python Crash Course by Eric Matthes (No Starch Press; 

third edition, 2023)

•	 Python Workout by Reuven M. Lerner (Manning; first 

edition, 2020)

•	 Python Projects for Beginners by Connor P. Milliken 

(Apress, 2019)

https://doi.org/10.1007/979-8-8688-1516-4#DOI


386

•	 The Quick Python Book by Naomi Ceder (Manning; 

third edition, 2018)

•	 Learning Python by Mark Lutz (O’Reilly Media; fifth 

edition, 2013)

�Courses
The following list includes two helpful online courses covering a wide 

range of topics. At the time of writing, the second course in this list is not 

free, but you may find promotional discounts occasionally:

https://www.youtube.com/watch?v=QXeEoD0pB3E&list=PLsyeobzWxl7p
oL9JTVyndKe62ieoN-MZ3

https://www.linkedin.com/learning/learning-python-14393370

�Other Resources
Throughout the book, you have seen various online resources in the 

discussions and the “Q&A Sessions.” Be sure to explore those resources to 

enhance your learning further.

Appendix B  What’s Next?

https://www.youtube.com/watch?v=QXeEoD0pB3E&list=PLsyeobzWxl7poL9JTVyndKe62ieoN-MZ3
https://www.youtube.com/watch?v=QXeEoD0pB3E&list=PLsyeobzWxl7poL9JTVyndKe62ieoN-MZ3
https://www.linkedin.com/learning/learning-python-14393370


387© Vaskaran Sarcar 2025 
V. Sarcar, Python Bootcamp, https://doi.org/10.1007/979-8-8688-1516-4

�APPENDIX C

Other Books by 
the Author
The following list includes other Apress books by the author:

•	 Creational Design Patterns in C# (Apress, 2025)

•	 Task Programming in C# and .NET (Apress, 2025)

•	 Parallel Programming with C# and .NET (Apress, 2024)

•	 Introducing Functional Programming Using C# 

(Apress, 2023)

•	 Simple and Efficient Programming with C# Second 

Edition (Apress, 2022)

•	 Test Your Skills in C# Programming (Apress, 2022)

•	 Java Design Patterns Third Edition (Apress, 2022)

•	 Simple and Efficient Programming with C# 

(Apress, 2021)

•	 Design Patterns in C# Second Edition (Apress, 2020)

•	 Getting Started with Advanced C# (Apress, 2020)

•	 Interactive Object-Oriented Programming in Java 

Second Edition (Apress, 2019)

https://doi.org/10.1007/979-8-8688-1516-4#DOI


388

•	 Java Design Patterns Second Edition (Apress, 2019)

•	 Design Patterns in C# (Apress, 2018)

•	 Interactive C# (Apress, 2017)

•	 Interactive Object-Oriented Programming in Java 

(Apress, 2016)

•	 Java Design Patterns (Apress, 2016)

To learn more about these books and the author’s non-Apress books, 

you can refer to the following links:

•	 https://amazon.com/author/vaskaran_sarcar

•	 https://link.springer.com/search?newsearch=true
&query=vaskaran+sarcar&content-type=book&dateFr
om=&dateTo=&sortBy=newestFirst

Appendix C  Other Books by the Author

https://amazon.com/author/vaskaran_sarcar
https://link.springer.com/search?newsearch=true&query=vaskaran+sarcar&content-type=book&dateFrom=&dateTo=&sortBy=newestFirst
https://link.springer.com/search?newsearch=true&query=vaskaran+sarcar&content-type=book&dateFrom=&dateTo=&sortBy=newestFirst
https://link.springer.com/search?newsearch=true&query=vaskaran+sarcar&content-type=book&dateFrom=&dateTo=&sortBy=newestFirst


389© Vaskaran Sarcar 2025 
V. Sarcar, Python Bootcamp, https://doi.org/10.1007/979-8-8688-1516-4

Index

A
Actual parameters, 188
Alias, 205, 206
append(), 162
Arguments, 187, 189
Arithmetic operators, 357–358
Assignment operators, 359, 360
Associativity, 55–56

B
Base class/superclass, 321
Binary files

copying image, 267
analysis, 271
demonstration, 267
output, 267
pickle files, 269, 270
pickle module, 272
pickling/unpickling,  

268, 269
reconstructing, 270, 271

dump() and load() functions, 
274, 280

random integers, 274, 276, 277
Bitwise operators, 54, 56, 368–371
Boolean data type, 84
Boolean variables, 85

Break statement, 136–138
Built-in functions, 29, 

67–74, 79, 139

C
Case study, 91, 116, 146, 178, 216, 

249, 280, 316, 351
Catching, 225
Child class/derived class, 321
Class, 227, 298, 375

definition, 293
importing

alternative code, 311–313
multiple classes, 309, 310
single class, 307, 308
whole module, 310

instance value, 302
modeling, 294, 295, 297

Class methods, 372, 375
class attributes, 380
@classmethod, 380
cls, 376
Color class, 376, 377
inheritance, 381
and instance method, 378, 380
and objects, 381
parent class, 382

https://doi.org/10.1007/979-8-8688-1516-4#DOI


390

vs. static method, 375, 382
update_color method, 379

Code reuse concept, 194
Coding, 33, 223, 322
Command-line interface (CLI), 5, 9
Comments, 23–25, 29
Comparison operators, 99, 102, 361
Computer programming, 3, 143
Constructors, 299

analysis, 301
definition, 299
demonstration, 300
non-parameterized, 299
variables, 299

Contradictions, 111
current_number, 126

D
Default attributes

analysis, 306
concept, 304
demonstration, 305
outupt, 305, 306

Default values, 190, 192
Demonstration, 20, 26, 33, 41, 87, 

100–102, 104, 105, 107–109, 
133, 134, 138, 139, 185, 190, 
194, 195, 197, 201, 203, 205, 
228, 233, 237, 239, 244, 259, 
262, 266, 267, 270, 273, 300, 
303, 305, 308–310, 312, 
324, 338

Dictionaries, 172
characteristics, 172
code, 172, 173
output, 173, 174
sample implementations, 180

E
elif statements, 99, 102, 103, 105, 

106, 118
else, 99, 100, 102, 105–107, 118, 121, 

218, 220, 237, 238, 240, 336
employee_names, 134, 135
eval(), 120
Exception handler, 225
Exception handling, 223

arithmetic problem, 225
documentation, 233
else block, 237

demonstration, 237
output, 237
Q&A session, 238

errors, 224
except blocks, 240

arrangement, 240
custom exception, 243
demonstration, 244
generic/broader, 241–243
output, 245

exercises, 246, 247
FileNotFoundError, 273, 274
hierarchical structure, 226

demonstration, 228
output, 228–230

Class methods (cont.)

IndeX



391

parent–child 
relationship, 227

Q&A session, 230, 231, 233
subset, 226
vehicle, 228
ZeroDivisionError, 227

key points, 231, 232
operations, 224
pass statement, 238

analysis, 240
demonstration, 239
output, 239

pass statement
demonstration, 239

problem statement, 249–251
purpose, 224
Python, 226
sample implementation, 251, 252
secure application, 224
solution to exercises, 247–249
try block, 238
try-catch-finally, 233

demonstration, 233, 234
output, 234, 235
Q&A session, 235, 236

unwanted situations, 224

F, G
FileNotFoundError, 272–274
Files, 253

binary files (see Binary files)
text files (see Text files)
types, 253

Float, 38, 46, 250, 251
foreach loop, 133
for loop, 129
Formal parameters, 188
Function arguments, 188

keyword arguments,  
189–192

positional arguments, 189
variable, 193–196

Functions, 293
case studies, 216–218
characteristics

analysis, 186
def keyword, 184
demonstration, 185
documentation, 185
output, 186
print_details, 184
print_hello(), 184
print(print_details.__

doc__), 185
logical set of statements, 183
sample implementations, case 

studies, 218–222

H
hello_world.py file, 20

I, J
IDE, 12–15, 81, 223
Identity operators, 363–365
IDLE, 10–12, 15, 66

IndeX



392

if-else, 99, 100, 102, 105, 218
index() function, 73
Inheritance, 321, 334, 341

case studies, 351–355
hierarchical inheritance, 334
hybrid inheritance, 335
is-a relationships, 342
multilevel inheritance, 334
multiple inheritance, 327

analysis, 328
attributes, 329
child.describe(), 330
demonstration, 328
<class ‘object’>, 331
MRO, 329
search order, 330

single inheritance, 323
analysis, 325
department class, 326
describe method, 326
overriding, 326
student class, 324, 325, 327

super call, 324, 331, 333
initial_list, 195
Instance, 297
Instantiation, 294
int() function, 40, 46, 79, 88, 115
IS-A relationship, 322
isdigit() function, 79, 80
islower() function, 71
iterable_element, 134
iterable object, 139
Iteration, 123, 138

K
Keyword arguments

default values, 190
demonstration, 190
output, 191
warning, 192

L
Lambda functions

def keyword, 197
demonstration,  

197, 198
lambda keyword, 197
output, 197, 199

len() function, 174, 181
Lists, 151

append(), 162
code, 162
code, 151–161
list.sort() method, 164
max() and min()  

functions, 159
output, 162, 163
output, 152–161
remove, 158
sort() function, 163

list.sort() method, 164
Logical operators, 362
for loop, 129
Loop statements, 124

while loop, 125
lower(), 70

IndeX



393

M
__main__, 208, 209
makedirs() function, 285
make_double(), 195
map function, 198
Mathematical functions, 82
Membership operators, 51, 366, 367
__init__() method, 299
Method resolution order 

(MRO), 329
module_name.function_ 

name, 204
Modules, 199

alias
demonstration, 205
output, 206

bootcamp_library.py, 200
create, 200
definition, 199
demonstration, 201
general form, import, 206
import entire contents

bootcamp_library.py, 202
demonstration, 203

output, 202
MRO, see Method resolution 

order (MRO)
Multiple Python versions, 8

N
__name__, 208
Naming conventions, 43–48
Nested loop, 141–142

O
Object-oriented programming 

(OOP), 227, 293, 295, 
313, 316–318

Objects, 294
attribute value, 302

output, 304
student’s roll number, 303

creation, 295, 296
alternative code, 296
describe method, 296
sam.describe()/Student.

describe(sam), 297
describe method, 298

Operators, 50, 51, 55, 357, 359, 
361–363, 366, 368

arithmetic operators, 357, 358
assignment operators, 359, 360
bitwise operators, 368–371
comparison operators, 361
identity operators, 363–365
logical operators, 362
membership operators, 366, 367

P, Q
Parentheses, 51, 53, 137, 171
Parameters, 67, 120, 187, 188
Parent class, 321, 322, 324–326, 330, 

340, 341
Pass statement, 238, 328, 329
Path environment variable, 7
Positional arguments, 188, 189
Print function, 142, 257

IndeX



394

print_details(), 184, 186, 188
Private variables and methods

ATM card/credit card, 336
private data, accessing, 338

amit.display_salary(), 338
child class, 340
demonstration, 338
display method, 340, 341
name clashes, 339
output, 339
parent class, 340

public information, 336
underscore(s), 337

Program execution
as the main program,  

207–209
as main program, refactored 

code, 274, 277
problems, 223

Programming languages, 69, 102, 
133, 328, 336

Programs
report card, 281

outputs, 282, 283
sample implementation, 

285, 286, 288, 289
student_name.txt, 282

user IDs, 281
sample implementation, 

284, 285
PyCharm, 15–17, 20, 21, 36, 37, 68, 

79, 128, 184, 223
PyCharm Terminal Window 

shell, 46

Python, 3, 5, 7, 8, 12, 86, 109, 131, 
141, 385

code, 8
command prompt, 9
download, 5
download and install, 6
IDLE, 10
installer, 4
interpreter and install, 4
“shells” and “terminals”, 9, 12
version, 4, 6, 9
Windows, 6

PythonBootcamp, 15, 17, 18
Python command shell, 66
Python expression, 56, 120
Python file, 19, 20, 87, 208, 209, 

308, 309
Python module/package, 208
Python programming, 12, 15, 35, 

43, 301, 375
Python programs, 8, 12, 14, 20, 21, 

146, 272
Python scripts, 12, 14–16, 27
Python shell, 9, 33, 36, 45, 81, 

90, 369–371
Python standard library, 108, 199

R
Raises, 225
randint() function, 119, 149
Remove, 46, 158, 166, 175, 212, 266
repeat_sum function, 194, 195
Return value, 193, 195

IndeX



395

S
sample_text_file.txt file, 278
Solution, 58, 90, 114, 347
Solution to exercises, 90, 94, 114, 

117, 315, 347, 354
sort() function, 163
Static methods, 372

characteristics, 373
color class, 372, 373
instance method, 372
instances, 375
output, 373
utility functions, 374

Strings, 64, 68
numbers, 76

Student class, 298, 301, 306–308, 
311, 312, 324, 326, 327

T
Tautology, 111–112
text1.upper(), 70, 71
Text files

approximate number of words, 
274, 278

content, 254
first “n” lines, 274–276
programs, 254
reading

analysis, 256
approaches, 259, 260
arguments, 255
issues, 257
keyword, 259

modes, 260
open function, 255
program, 254–256
read function, 258
readline() function, 255
warning, 258

writing
analysis, 266
contents, 264
demonstration, 262, 266
modes, 261
open function, 262
output, 262, 264, 266
r+/w+ modes, 263
size limitation, 265

Total variable, 195
tuple() function, 168
Tuples, 165, 167, 168

code, 166–170
error, 166
output, 166–170
round brackets, 165
slice operator, 166

U
upper(), 70

V
Variable, 31, 35

assigning, 31
assignment operator, 31
class vs. instances, 306, 307

IndeX



396

float, 40
programming, 33
reassign, 40, 41

Variable arguments
analysis, 194, 196
calculate_sum  

function, 193
demonstration, 194, 195

error, 193
output, 194, 196

Vehicle class, 321, 334

W, X, Y, Z
while loop, 124, 128, 129, 149

characteristics, 125
flowchart, 126

Variable (cont.)

IndeX


	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: Foundations
	Chapter 1: Getting Ready
	What Is Python?
	Setting Up the Programming Environment
	Installing Python
	Checking the Installation Status
	Troubleshooting
	Checking Multiple Python Versions

	Running the Code
	Using the Command Prompt
	Q&A Session

	Using IDLE
	Using Popular IDEs
	Q&A Session
	Demonstration 1.1
	Output


	Using Comments
	Useful Notes
	Demonstration 1.2
	Output
	Analysis
	Q&A Session


	Summary
	Exercise 1
	Keys to Exercise 1
	E1.1
	E1.2
	E1.3



	Chapter 2: Variables and Operators
	Understanding Variables
	Assigning Variables
	Assigning a Single Variable
	Are x=y and y=x the Same?
	Demonstration 2.1
	Output
	Analysis
	Assigning Multiple Variables in a Single Line
	Assigning the Same Value to Multiple Variables
	Is the Print Function Mandatory?

	Types of Variables
	Q&A Session

	Reassigning Variables
	Reassigning Can Change the Type
	Demonstration 2.2
	Output
	Q&A Session

	Naming Conventions
	Q&A Session


	Operators
	Types
	Precedence of Operators
	Operators Associativity
	Q&A Session


	Summary
	Exercise 2
	Keys to Exercise 2
	E2.1
	E2.2
	E2.3
	E2.4
	E2.5



	Chapter 3: Simple Data Types
	Strings
	Playing with Strings
	Using Built-In Functions
	Q&A Session


	Numbers
	Playing with Numbers
	Using Built-In Functions
	Importing the math Module

	Booleans
	Playing with Booleans
	Q&A Session


	Making Interactive Programs
	Accepting User Inputs
	Demonstration 3.1
	Output
	Analysis


	Summary
	Exercise 3
	Keys to Exercise 3
	E3.1
	E3.2
	E3.3


	Case Studies
	CS3.1 Problem Statement
	CS3.2 Problem Statement

	Sample Implementations
	CS3.1 Implementation
	CS3.2 Implementation



	Part II: Building Smart Programs
	Chapter 4: Decision-Making
	Understanding Conditional Structures
	Using an if Statement
	Demonstration 4.1
	Output
	Analysis

	Using the if-else Statements
	Demonstration 4.2
	Output
	Analysis

	Using the if-elif-else Statements
	Demonstration 4.3
	Output
	Q&A Session
	Demonstration 4.4
	Output
	Q&A Session
	Demonstration 4.5
	Output
	Analysis

	Alternative Designs
	Demonstration 4.6
	Output

	Pattern Matching Using the match Statement
	Demonstration 4.7
	Output
	Q&A Session


	Tautology and Contradictions
	Summary
	Exercise 4
	Keys to Exercise 4
	E4.1
	E4.2
	E4.3
	E4.4
	E4.5


	Case Study
	CS4.1 Problem Statement
	CS4.2 Problem Statement

	Sample Implementations
	CS4.1 Implementation
	CS4.2 Implementation


	Chapter 5: Loops
	The Purpose of Iteration
	The while Loop
	Notable Characteristics
	Demonstration 5.1
	Output
	Q&A Session


	The for Loop
	Is range a Function or a Type?
	Demonstration 5.2
	Output

	Introducing Lists
	Demonstration 5.3
	Output
	Analysis
	Q&A Session

	Use of the break Statement
	Demonstration 5.4
	Output
	Q&A Session

	Use of the continue Statement
	Demonstration 5.5
	Output
	Analysis

	Using Built-In Functionalities
	The iter and next Functions
	Q&A Session

	The enumerate Function
	Demonstration 5.6

	Nested Loop
	Demonstration 5.7
	Output
	Analysis


	Summary
	Exercise 5
	Keys to Exercise 5
	E5.1
	E5.2
	E5.3
	E5.4
	E5.5


	Case Study
	CS5.1 Problem Statement
	CS5.2 Problem Statement

	Sample Implementations
	CS5.1 Implementation
	CS5.2 Implementation


	Chapter 6: Advanced Data Types
	Lists
	Playing with Lists
	Q&A Session


	Tuples
	Playing with Tuples
	Q&A Session


	Dictionaries
	Playing with Dictionaries
	Q&A Session


	Summary
	Exercise 6
	Keys to Exercise 6
	E6.1
	E6.2
	E6.3
	E6.4
	E6.5
	E6.6


	Case Study
	CS6.1 Problem Statement
	CS6.2 Problem Statement

	Sample Implementations
	CS6.1 Implementation
	CS6.2 Implementation
	Possible Improvements



	Chapter 7: Functions and Modules
	Function Overview
	Characteristics
	Demonstration 7.1
	Output
	Analysis
	Q&A Session


	Discussion on Function Arguments
	Positional Argument
	Keyword Arguments
	Use of Default Values
	Demonstration 7.2
	Output
	Warning
	Q&A Session

	Variable Arguments
	Demonstration 7.3
	Output
	Analysis
	Q&A Session
	Demonstration 7.4
	Output
	Analysis
	Q&A Session


	Lambda Functions
	How to Use?
	Demonstration 7.5
	Output
	Q&A Session
	Demonstration 7.6
	Output


	Modules
	Creating a Module
	Importing Partial Contents
	Demonstration 7.7
	Output

	Importing Entire Contents
	Demonstration 7.8
	Q&A Session

	Alias
	Demonstration 7.9
	Output


	Additional Notes
	General Form of Import
	Executing a Program as the Main Program

	Summary
	Exercise 7
	Keys to Exercise 7
	E7.1
	E7.2
	E7.3
	E7.4
	E7.5
	E7.6
	E7.7


	Case Study
	CS7.1 Problem Statement
	CS7.2 Problem Statement

	Sample Implementations
	CS7.1 Implementation
	Possible Improvements

	CS7.2 Implementation
	Possible Improvements



	Chapter 8: Exception Management
	General Philosophy
	Common Terms
	Exception Handling in Python
	Hierarchical Structure
	Demonstration 8.1
	Output
	Q&A Session

	Key Points
	Q&A Session

	Using try-catch-finally
	Demonstration 8.2
	Output
	Q&A Session

	Using the else Block
	Demonstration 8.3
	Output
	Q&A Session

	Using the pass Statement
	Demonstration 8.4
	Output
	Analysis

	Arranging Multiple except Blocks
	Q&A Session
	Demonstration 8.5
	Output


	Summary
	Exercise 8
	Keys to Exercise 8
	E8.1
	E8.2
	E8.3
	E8.4


	Case Study
	CS8.1 Problem Statement

	Sample Implementation
	CS8.1 Implementation


	Chapter 9: Programming with Files
	Processing Text Files
	Reading from a File
	Demonstration 9.1
	Output
	Analysis
	Demonstration 9.2
	Output
	Demonstration 9.3
	Output
	Using the with Keyword
	Demonstration 9.4
	Output
	Q&A Session

	Writing to a File
	Demonstration 9.5
	Output
	Q&A Session
	Limiting the Size
	Demonstration 9.6
	Output
	Analysis


	Processing Binary Files
	Copying an Image
	Demonstration 9.7
	Output

	Pickling and Unpickling
	Demonstration 9.8
	Output
	Demonstration 9.9
	Output
	Analysis
	Q&A Session


	Handling Exceptions
	FileNotFoundError
	Demonstration 9.10
	Output


	Summary
	Exercise 9
	Keys to Exercise 9
	E9.1
	E9.2
	E9.3
	E9.4
	E9.5


	Case Study
	CS9.1 Problem Statement
	CS9.2 Problem Statement

	Sample Implementations
	CS9.1 Implementation
	CS9.2 Implementation



	Part III: Introduction to OOP
	Chapter 10: Classes and Objects
	Basic Concepts and Common Terms
	Modeling a Class
	Creating Objects
	Alternative Code
	Q&A Session


	Initializer
	Using Initializers
	Demonstration 10.1
	Output
	Analysis

	Changing an Attribute Value
	Demonstration 10.2
	Output


	Default Attributes
	Applying the Concept
	Demonstration 10.3
	Output
	Analysis

	Class Variables versus Instance Variables
	Q&A Session


	Importing Classes
	Importing a Single Class
	Demonstration 10.4
	Output
	Analysis

	Importing Multiple Classes
	Demonstration 10.5
	Output

	Importing the Whole Module
	Demonstration 10.6
	Output

	Alternative Code
	Q&A Session
	Demonstration 10.7
	Output


	Summary
	Exercise 10
	Keys to Exercise 10
	E10.1
	E10.2
	E10.3
	E10.4
	E10.5


	Case Study
	CS10.1 Problem Statement
	CS10.2 Problem Statement

	Sample Implementations
	CS10.1 Implementation
	CS10.2 Implementation


	Chapter 11: Inheritance
	Basic Concepts and Terminologies
	Types of Inheritance
	Single Inheritance
	Understanding the Super Call
	Demonstration 11.1
	Output
	Analysis
	Q&A Session

	Multiple Inheritance
	Demonstration 11.2
	Output
	Analysis
	Method Resolution Order
	Q&A Session

	Investigating the Super Call
	Demonstration 11.3
	Output
	Analysis

	Hierarchical Inheritance
	Multilevel Inheritance
	Hybrid Inheritance

	Private Variables and Methods
	Does Python Have Private Variables?
	Accessing Private Data
	Demonstration 11.4
	Output
	Q&A Session


	Final Thoughts
	Summary
	Exercise 11
	Keys to Exercises 11
	E11.1
	E11.2
	E11.3
	E11.4
	E11.5
	E11.6
	E11.7
	E11.8
	E11.9
	E11.10
	E11.11


	Case Study
	CS11.1 Problem Statement
	CS11.2 Problem Statement

	Sample Implementations
	CS11.1 Implementation
	CS11.2 Implementation



	Appendix A: Supplementary Material
	More on Operators
	Arithmetic Operators
	Assignment Operators
	Comparison (or Relational) Operators
	Logical Operators
	Identity Operators
	Membership Operators
	Bitwise Operators
	Special Notes


	Static Methods
	How to Use?
	Q&A Session


	Class Methods
	How to Use?
	Q&A Session
	Conclusion



	Appendix B: What’s Next?
	Books
	Courses
	Other Resources

	Appendix C: Other Books by the Author
	Index



